
Beneath the Surface:
An Analysis of OEM Customizations on the Android TLS Protocol Stack

Vinuri Bandara†‡, Stijn Pletinckx§, Ilya Grishchenko§, Christopher Kruegel§,
Giovanni Vigna§, Juan Tapiador‡, Narseo Vallina-Rodriguez†

†IMDEA Networks Institute, Madrid, Spain ‡Universidad Carlos III de Madrid, Spain
§University of California, Santa Barbara, CA, USA

{vinuri.bandara,narseo.vallina}@imdea.org,
{stijn,grishchenko,vigna}@ucsb.edu, chris@cs.ucsb.edu,

jestevez@inf.uc3m.es

Abstract—The open-source nature of the Android Open
Source Project (AOSP) allows Original Equipment Manufac-
turers (OEMs) to customize the Android operating system,
contributing to what is known as Android fragmentation.
Google has implemented the Compatibility Definition Doc-
ument (CDD) and the Compatibility Test Suite (CTS) to
ensure the integrity and security of the Android ecosystem.
However, the effectiveness of these policies and measures in
warranting OEM compliance remains uncertain. This paper
empirically studies for the first time the nature of OEM
customizations in the Android TLS protocol stack, and their
security implications on user-installed mobile apps across
thousands of Android models. We find that approximately
80% of the analyzed Android models deviate from the stan-
dard AOSP TLS codebase and that OEM customizations of-
ten involve code changes in functions used by app developers
for enhancing TLS security like end-point and certificate ver-
ification. Our analysis suggests that these customizations are
likely influenced by factors such as manufacturers’ supply
chain dynamics and patching prioritization tactics, including
the need to support legacy components. We conclude by
identifying potential root causes and emphasizing the need
for stricter policy enforcement, better supply chain controls,
and improved patching processes across the ecosystem.

1. Introduction

The Android Open Source Project (AOSP) allows
Original Equipment Manufacturers (OEMs) to introduce
proprietary features in their devices. However, extending
or modifying the original AOSP codebase has two col-
lateral implications: the phenomenon known as Android
fragmentation [49, 95] and the risk of introducing security
vulnerabilities. Google has implemented the Compatibility
Definition Document (CDD) [22] and the Compatibility
Test Suite (CTS) [85] to ensure that OEMs maintain API
integrity and permission model consistency, and enhance
the security of the Android ecosystem. CDD policies
define security and compatibility requirements [75], while
CTS is a suite of automated tests to ensure devices ad-
here to CDD specifications, including signatures, platform
APIs, and permissions checks. Device models passing the
CTS tests can be sold as “Android-compliant.”

While these measures show Google’s attempts to har-
monize the Android ecosystem [98], researchers have

reported pitfalls in their application [84]. However, prior
research has ignored the security risks introduced by OEM
customizations to the Android TLS protocol stack, which
manages TLS-based traffic and cryptographic functions.
Android’s TLS stack is composed of four components:
the Java Secure Socket Extension (JSSE), the Java Cryp-
tographic Extension (JCE), the Java Cryptographic Archi-
tecture (JCA) providers, and the trusted Certificate Au-
thority (CA) root store. These components have undergone
continuous security improvements to mitigate vulnera-
bilities. For example, in 2014, AOSP switched its JCA
provider from OpenSSL to BoringSSL in response to the
Heartbleed bug [29]. Similarly, Android has supported the
most recent TLS standard, TLS 1.3, since Android 10 [4].
However, not all OEMs will diligently follow upstream
updates. In fact, vendors may modify or remove functions
from the TLS stack for reasons such as maintaining com-
patibility with legacy systems. These deviations can result
in API functional inconsistencies across device models,
even for the same version release. This not only increases
platform fragmentation but also exposes user-space apps
to multiple network threats, including in/on-path intercept-
ing proxies and surveillance if unaware app developers do
not handle API inconsistencies correctly [73, 78, 86, 94].

This paper presents the first large-scale analysis of
OEM modifications to the Android TLS stack across
thousands of Android models. Our research seeks answers
to the following three research questions:

RQ1 What customizations do OEMs apply to the Android
TLS stack (JSSE, JCE, JCA, and trusted CA root
store), and what are their security implications?

RQ2 Do OEM TLS customizations impact on user-space
Android apps’ functioning and security?

RQ3 Are Google’s CDD and CTS effective at ensuring
TLS API consistency and forcing OEMs to dili-
gently follow AOSP upstream updates?

To answer these questions, we developed a methodol-
ogy that leverages code diffing techniques to compare a
large amount of OEM codebases with the corresponding
baseline AOSP codebase. Our dataset, collected through
crowd-sourcing, includes 53,189 Android images from
370 OEMs, comprising 16,789 models running Android
versions 9 through 15. This represents the largest and most
diverse empirical analysis of critical Android subsystems
and OEM customizations to date. The key contributions

and findings of our study are:

1) Widespread OEM customizations. Approximately 80%
of OEM models deviate from the AOSP codebase. The
most critical customizations occur in the lower layers
(JCE, JCA) and the CA root store, many of which have
clear platform fragmentation and security implications.
We classify the security impact of these customiza-
tions into seven categories. Under this classification,
we find examples of modifications that prevent app
developers from effectively blocking clear-text traffic,
disabling deprecated standards vulnerable to known
attacks such as POODLE [46], or modifying func-
tionality related to certificate blocklisting and pinning.
We also observe devices lacking critical updates for
modern cryptographic implementations. Additionally,
274 OEMs either add or remove certificates to/from
the AOSP trusted root CA store, including untrusted
CAs like Comodo and TrustCor (§5). To systematically
assess these risks, we define a threat model (§3) that
categorizes adversaries and attack scenarios, providing
a structured framework to evaluate the security impli-
cations of TLS customizations.

2) Impact on user-space apps. OEM customizations may
negatively impact app developers’ efforts to secure net-
work communications on their apps, leading to varying
and unexpected security properties across models. We
demonstrate the real-world impact of TLS customiza-
tions by studying the dependencies that 20k Android
apps available on the Google Play Store have on
methods removed or tampered with by OEMs. Over
75% of the analyzed apps use at least one of the re-
moved functions. We report evidence of app developers
wrongly and correctly handling API inconsistencies
in their apps, including popular games like Temple
Run 2—with over 1 billion installations—and popular
third-party advertising SDKs like Mintegral, which are
embedded in hundreds of thousands of apps (§6).

3) Inconsistencies in OEM patching and effectiveness of
CDD/CTS. Most OEMs show significant discrepancies
in maintaining consistency with AOSP, with popular
models like the Samsung Galaxy S20 Ultra missing
updates and dependencies. This highlights the varied
and inconsistent approaches followed by OEMs in
keeping up with AOSP security patches, which overall
contributes to Android fragmentation. We discuss how
Google’s current certification efforts may be insuffi-
cient to prevent issues regarding API inconsistency,
adherence to upstream changes, root store manage-
ment, and other compliance requirements by measuring
the prevalence of certain violations, even in Google-
certified models. This highlights the need for a broader
scope in Google’s CTS tests for catching security and
compliance issues more effectively (§7).

Our results indicate the need for proactive and holistic
measures such as strict testing frameworks to harmonize
Android TLS API security guarantees and ensure compli-
ance with security standards and best practices. As regu-
lations like the EU Cyber Resilience Act (CRA) emerge,
regulatory bodies have the opportunity to establish clearer
standards that could enhance compliance checks(§7.3).
Responsible Disclosure. We shared a preliminary version
of this paper with Google in late 2024. We also filed a

Developer apps / services

JSSE standard APIs ConscryptOkHttp BouncyCastle

JCE APIs

Cryptographic functionalities / providers (JCA) APIs - BoringSSL

libssl libcrypto

Can be used as a
stand-alone library

Conscrypt
TrustManager

Network Security
Config

configures

uses

extends

calls API

Application
level

Framework
level

Middleware
level

Kernel
level

Android root
store

/
System CA
certificates

callscalls

Figure 1: Architecture of the Android TLS stack.

bug report to Google and MIUI for one of our findings
that is under investigation and marked as a security issue
(see details in §5). The paper’s dataset and code artifacts
are available at https://github.com/OEM-customization/.
Appendix A details our open-science approach.

2. Background

Android’s networking and cryptographic functions are
implemented across several layers, written in both Java
and native code, as shown in Figure 1. This multi-layered
architecture enables app developers to easily open secure
connections with remote endpoints by invoking the Java
Secure Socket Extension (JSSE) APIs (§2.1), which in-
teract with (i) the Java Cryptographic Extension (JCE)
(§2.3) for cryptographic operations like encryption, de-
cryption, and key management, and (ii) the Java Crypto-
graphic Architecture (JCA) (§2.2) that provides a foun-
dational platform for implementing encryption algorithms
and managing cryptographic keys. While JCE has now
been integrated into the broader JCA framework [17], in
this paper we analyze JCE separately from JCA for clarity
and structural purposes. Finally, (iii) the trusted root CA
store (§2.4) acts as a trust anchor for the Public Key
Infrastructure (PKI), helping to validate the authenticity
of server X.509 certificates during the TLS handshake.

2.1. Java Secure Socket Extension (JSSE)

Android app developers can use JSSE APIs to open
and manage secure TLS/SSL connections. JSSE is a Java-
based framework and set of APIs implementing functions
to open Java TLS sockets, modify the app’s Network
Security Configuration file to trust self-signed X.509 cer-
tificates, implement custom hostname verification using
the HostnameVerifier interface with classes (e.g., using
SSLSocket), or define a denylist of untrusted or compro-
mised CAs, like Comodo and DigiNotar, which may still
be present in the handsets’ trusted root CA store (§2.4).

From an architectural perspective, JSSE bridges user-
space apps with the JCA (§2.2) and the underlying JCE
(§2.3) security providers, implemented in both Java and
native code. The AOSP sources its JSSE classes from
OpenJDK [81]. However, OEMs have the flexibility to
import a version of OpenJDK of their choice into the

TABLE 1: Key security threats arising from OEM TLS customizations (NA: Network adversaries, MA: Malicious apps).

Code Threat Category Security Impact Attack Vector
TN1 Outdated TLS

components
Increases the attack surface by exposing de-
vices to vulnerabilities already patched in
newer versions.

NA forces outdated protocol negotiation (e.g., SSLv3, TLS 1.0)
to weaken encryption and enable downgrade attacks like POO-
DLE, DROWN, and BEAST.

TN2 Weak or missing
encryption

Exposes sensitive data by allowing unencrypted
communication or weak ciphers.

NA manipulates fallback mechanisms to downgrade secure con-
nections, intercepting login credentials or session tokens.

TN3 Insecure endpoint
validation

Weak hostname verification or improperly
trusted certificates allow adversaries to imper-
sonate trusted entities.

NA uses DNS spoofing and rogue certificates to redirect users
to malicious servers, enabling phishing and person-in-the-middle
attacks.

TA1 App-level exploits Bypasses key security mechanisms like certifi-
cate pinning, allowing unauthorized access or
data interception.

MA exploits (intentionally triggers) customizations to manipulate
network traffic, tricking users into accepting invalid certificates
and enabling person-in-the-middle attacks.

path /libcore—Google’s implementation of some core
Java libraries that also provide POSIX system calls from
Java—as described in AOSP’s documentation [37]. This
flexibility allows OEMs to modify JSSE class signatures
and implementations, potentially contributing to platform
API fragmentation and impacting the security guarantees
of apps relying on standard Android TLS APIs.

2.2. Java Cryptographic Architecture (JCA)

The JCA, also known as the Cryptographic Service
Provider (CSP), is a rich framework implemented in native
and Java code. These components provide the underlying
cryptographic primitives and protocols for the JSSE (§2.1)
and JCE (§2.3), essential for TLS communications, digital
signatures, and key management. In AOSP, BoringSSL
serves as the default JCA provider [23].

BoringSSL, developed by Google as a derivative of
OpenSSL in response to the 2014 Heartbleed vulnera-
bility [29], replaced OpenSSL starting with Android 7
in 2016. BoringSSL, similar to OpenSSL, compiles into
two separate shared objects, libssl and libcryp
to, which handle secure protocol implementations and
cryptographic primitives. libcrypto also serves as
the provider of cryptographic primitives for libssl.
OEMs can modify JCA by replacing or supplementing
BoringSSL with alternative open-source providers such
as OpenSSL [55] and Libgcrypt [28], or use proprietary
solutions such as Samsung Knox [1]. While this flexibility
allows OEMs to enhance the cryptographic capabilities of
their products, Google advises against practices such as in-
cluding deprecated algorithms or insecure providers [15].

2.3. Java Cryptographic Extension (JCE)

The JCE is an integral part of the broader JCA,
which contains key cryptographic classes responsible for
encryption, decryption, and key management operations.
AOSP’s JCE is formed by several key components:
• Conscrypt, introduced in Android 11, implements key

cryptographic and TLS support functions. As a Java
Security Provider (JSP), it leverages BoringSSL to
perform cryptographic operations like encryption and
secure communication using TLS. The libjavacryp
to.so library bridges BoringSSL and the Java compo-
nents of the Android TLS stack, enabling smooth cryp-
tographic operations through the Java Native Interface
(JNI). Conscrypt’s SSLEngine directly supports SSL
Socket, creating a unified cryptographic framework.

• OkHttp is the principal Java-based HTTP(S) library,
which works with Conscrypt to ensure encrypted data
transmission that adheres to the latest TLS standards.
OkHttp optimizes network performance through fea-
tures like connection pooling and caching, while ensur-
ing secure data transmission. Although OkHttp is tightly
integrated with Android’s cryptographic framework and
is the default HTTP(S) library, OEMs can replace it with
alternatives such as Retrofit [32] or Volley [33].

• BouncyCastle historically implemented a wide range
of cryptographic algorithms. Since Android 12, many
of its deprecated implementations (including all AES
algorithms) have been removed and replaced by Con-
scrypt’s functions [77]. Yet, OEMs can still include
Bouncy Castle in their products if needed for legacy
support. Google advises against this practice, as it may
expose devices to outdated cryptographic standards [6].

2.4. The Trusted Root CA Store

The Public Key Infrastructure (PKI) is an essential
framework for procedures and policies governing public-
key encryption. The Android trusted root Certificate Au-
thorities (CA) store contains trusted root certificates re-
quired to verify the identity of remote endpoints be-
fore establishing secure TLS connections. AOSP includes
129-138 vetted root certificates (Android 9-14), issued
by CAs audited for compliance with industry standards
and security practice when issuing certificates [92]. If a
root certificate’s trust is compromised, Google removes
it from the trusted root store [93, 96]. Android’s root
store overlaps with Chromium’s to ensure cross-platform
consistency and maintain a reliable trust model.

OEMs can add or remove CAs from the trusted root
CA store, as prior research shows [94]. However, Google
advises caution due to potential security risks [61]. Privi-
leged components, such as Firmware-over-the-Air (FOTA)
providers, can dynamically remove deprecated or expired
X.509 certificates from the root store, but also can intro-
duce rogue CAs [69]. The lack of centralized oversight
over root store modifications increases the risk of mali-
cious software gaining privileged access [42]. Since all
root CAs are equally trusted by default, Android provides
APIs to denylist untrusted certificates or CAs, mitigating
threats from compromised CAs [10].

3. Threat Model

The security of the Android TLS stack is built on
the core components described in §2. OEMs introduce

security risks when they modify these TLS components,
deviating from Google’s implementation, for example by
modifying cryptographic configurations, the trusted root
certificate store or overriding default network APIs. To
systematically assess these risks, we define a threat model
that provides a structured framework for evaluating the
security impact of OEM modifications, guiding our em-
pirical analysis. We categorize adversaries capable of ex-
ploiting these vulnerabilities into:
• Network adversaries (NA): Attackers who intercept,

manipulate, or downgrade encrypted communications
over untrusted networks or on-path attacks, exploiting
weakened encryption or legacy TLS versions.

• Malicious apps (MA): Apps that exploit misconfigured
TLS, improperly manage trust stores, or expose system
APIs to disable security mechanisms and gain unautho-
rized access to sensitive data.

Using the methodology described in §4, we extract
and analyze TLS components to identify OEM-introduced
customizations. In §5, we map our empirical findings to
the defined threat model where relevant, assessing their
security implications. This structured approach provides a
clear understanding of how TLS customizations contribute
to security risks in the Android ecosystem.

4. Methodology

To answer our research questions, we built an analysis
pipeline (see Figure 2) based on differential code analysis
techniques (diffing) to automatically identify deviations
in OEM’s codebase from their AOSP equivalent. Our
pipeline consists of three stages: (i) OEM image collec-
tion (§4.1); (ii) identification of the corresponding AOSP
baseline implementation (§4.2); and (iii) detection of the
OEM customizations with respect to the corresponding
baseline using diffing techniques (§4.3).

4.1. OEM Image Collection

We use two complementary crowd-sourced datasets to
gather a representative dataset of Android images from
various OEMs, models, and OS versions:
• FirmwareScanner [21] is a tool we developed and pub-

lished on Google Play to crowdsource Android image
collection. It scans the system/, vendor/, ODM/,
and product/ partitions of volunteers’ devices to
gather device-specific metadata, preinstalled apps (.apk
files), X.509 root CA certificates, and native libraries
in an ethical and privacy-preserving manner (see ethics
discussion below) [59]. Our analysis uses 53,189 An-
droid images (versions 9-15) collected using this tool.
Rooted devices are excluded to reduce analysis bias.

• Android Dumps [20] is a free web platform that allows
users to upload Android firmware images to a shared
repository. It complements FirmwareScanner with 1,925
images for Android 12-14.

Component extraction. We manually inspected the
AOSP code and the crowd-sourced Android images to lo-
cate the paths of compiled networking components across
OEMs and versions (see Table 8, Appendix B.1). Apart
from the standard paths, some OEMs place system com-
ponents on alternative paths like the vendor/ or produ

TABLE 2: Dataset summary across Android versions from
2018 to 2024 with market share (MS) data sourced from
StatCounter Global Stats (October 2024) [90].

Version #Devices #Models #Vendors Release MS

9 18,178 4,897 221 08/2018 4.25%
10 16,867 5,282 206 09/2019 6.92%
11 12,078 4,068 195 09/2020 12.71%
12 3,942 1,677 121 10/2021 14.27%
13 1,609 689 82 08/2022 19.87%
14 509 171 37 10/2023 33.67%
15 6 5 3 09/2024 -

Total 53,189 16,789 370 - -

ct/ paths. Therefore, we manually verified the location of
the targeted TLS stack components (JSSE, JCE, JCA, and
the trusted CA store) by manually inspecting the AOSP
source code and various OEM images, as well as propri-
etary binaries or custom implementations (e.g., alternative
crypto providers). In cases where discrepancies existed
between AOSP and OEM image paths, we recorded the
deviations and cross-verified these paths with the corre-
sponding metadata, as exemplified in Table 8. This process
ensured that the identified components were accurately
mapped and aligned with the expected structures based
on AOSP documentation and OEM-specific adjustments.

The build.prop file, which contains product-
specific properties and is typically located in the /sys
tem path, was available for 16% of the devices in our
dataset. We use those devices as ground truth to validate
our baseline establishment process in §4.2. We extracted
the JSSE and JCE components using their package names,
but for JCA components, we took additional steps to
account for similarities between BoringSSL and OpenSSL
(§2.2). To find alternative JCA providers and ensure fair
comparisons between OEM BoringSSL distributions and
AOSP, we examined the source files compiled into the
shared objects and their strings (§5.2).

Dataset description and Android version coverage. We
successfully extracted JSSE, JCA, and JCE components
and trusted root CA stores from 53,189 Android devices,
covering 16,789 models from 370 OEMs running Android
9 to 15. Our focus on Android 9 and above allows us
to track the evolution of OEM customizations over time,
while also covering 91.69% of today’s Android market
(see Table 2). This includes market leaders like Samsung
and lesser-known OEMs like Razer. As of Q3-2024, the
number of Android 15 devices remains limited.

Ethical considerations. Both Android Dumps and
FirmwareScanner datasets are contributed by volunteers
who provide their images willingly and with informed
consent. FirmwareScanner also collects device metadata
(e.g., model, manufacturer, supported SDK version, and
BUILD_FINGERPRINT) [3].1 To ensure privacy and
detect duplicates, FirmwareScanner uses the MD5 hash
of the device’s IMEI. This method has been approved by
our IRB, ensuring that user privacy is protected. Our study
is classified as non-human subjects research.

1The BUILD_FINGERPRINT is a standard device version identifier
structured as: $(BRAND)/$(PRODUCT)/$(DEVICE):$(RELEASE
)/$(BUILD_ID)/$(INCREMENTAL):$(TYPE)/$(TAGS).

OEM
firmware

Baseline establishment Diffing

Build

OEM version

Root certificate

 Java components

JSSE JCE

Native-code components

Android image collection
(Input)

Vendor customizations
(Output)

FirmwareScanner

Android Dumps

JCA Crypto provider
selection

libssl

libcrypto

BoringSSL

OpenSSL

AOSP Baseline

OEM Firmware

Android Open Source
Project v9-14

Java components

Function +/- Code changes

 Native-code components

Export symbol +/- Control flow changes

Root store

Root certificates +/-

OEM JSSE, JCE, JCA function and
code changes

OEM root store customizations

Component extraction

Baseline
identification

OEM fingerprint

OEM Stack

AOSP Stack

Figure 2: Overview of the complete methodology

4.2. Baseline Identification

Identifying OEM customizations using code diffing
techniques requires determining the official AOSP release
corresponding to each device model and version [24]. To
do this, we rely on two key metadata values collected
by FirmwareScanner and Android Dumps: the device’s
Android version and the BUILD_FINGERPRINT (re-
ferred to as FG). If the OEM adheres to AOSP build
guidelines [39], the BUILD_ID within the FG should
indicate the baseline version. For instance, a Samsung
device with an FG samsung/j6ltedtvvj/j6lte
:10/qp1a.190711.020/j600gtvjuacuh1/rel
ease-keys reports qp1a.190711.020 as the BU
ILD_ID, which maps to android-10.0.0_r2, as
documented by Google [39].

However, baseline identification is not always straight-
forward due to frequent non-compliance with CDD guide-
lines by OEMs (§7): 58% of devices have BUILD_ID
tags that do not correspond to known Android releases.
In such cases, we prioritize the Android version claimed
by the OEM collected by the FirmwareScanner using
the android.os.Build API, although this can be
misleading. To resolve inconsistencies, we employ the
following approaches:
1) MIUI-based2 devices often define custom build IDs

like RKQ1.*.002, which do not map to any specific
Android release. For example, this is seen in Xiaomi 11
using Qualcomm’s Snapdragon 865 processor. Similar
cases exist in Nokia, OnePlus, and LG models. In
such cases, as proposed in prior work [59, 84], we
rely on the compilation date from the OEM software
repository for the BUILD_ID, when available [41], or
use the OS version claimed by the OEM.

2) Some models report a build ID that corresponds to a
different Android version than the one running on the
handset. Since it is unclear if this is intentional, we
consider the version claimed by the OEM.

3) Security patches can introduce mismatches. While
patches may trigger new AOSP releases, vendors often
selectively or partially incorporate them into their de-
vices to ensure legacy feature compatibility or release
them with a delay [35, 66]. For instance, Blackview
devices built on 2022-04-12 (supporting SDK version
29 for Android 10) already include features from later
Android versions. However, their build ID remains as
android-10.0.0_r2, released on 2019-09-05. In

2MIUI is a fully compatible Android-based OS built by Xiaomi for
its Xiaomi, Redmi, Poco, and Blackshark devices. MIUI was recently
re-branded as HyperOS.

these cases, we use the build ID to set the baseline,
simplifying patch detection in our diffing process.
To validate our baseline selection, we leveraged

build.prop files from 8,573 devices in our dataset.
Only 12 devices (0.14%) exhibited conflicting SDK and
OS versions, suggesting potential misreporting by OEMs.
For all other devices, our method accurately aligned the
extracted metadata with known AOSP releases, reinforc-
ing confidence in our baseline selection process.

Beyond this broad validation, during our analysis, we
specifically focused on 73 flagged devices where version
mismatches suggested partial backporting of security up-
dates. For example, during diffing analysis, some devices
exhibited discrepancies where JSSE was up-to-date, but
Conscrypt remained outdated, indicating that parts of the
TLS stack were not updated in sync with the OS ver-
sion. Such inconsistencies and OEM practices could lead
to incorrect baseline selections and difficulties in result
contextualization. However, our combination of automated
cross-referencing and manual inspection minimizes incor-
rect baseline assignments and ensures that our analysis
focuses on findings with high confidence.

4.3. Differential Code Analysis

We conduct differential code analysis (diffing) on col-
lected device images to identify OEM customizations rela-
tive to their corresponding AOSP baseline.3 We decompile
Java-based components (JSSE and JCE) and binary ob-
jects (JCA) into manageable representations as discussed
in §4.3.1 and §4.3.2.
Inferring customization purposes. We defined a tax-
onomy (see Table 3) to categorize OEM customizations
according to their impact on TLS protocol properties
and security. Yet, the underlying reasons behind such
customizations may not always be clear. To address this,
we manually inspect AOSP and OpenJDK source code and
developer comments to infer functionality, and examine
Android security bulletins to check if CVEs are referenced
in commits, assessing OEM diligence in applying patches.

4.3.1. Java diffing. We decompile Java-based JSSE and
JCE packages to Smali code using baksmali [25] and
oat2dex [26]. Smali code is a disassembled representation
of the Dalvik executable (dex) bytecode that provides

3While dynamic analysis would be impractical to achieve this
paper’s objectives due to its inability to detect and extract customizations
at the code level, we use this technique to demonstrate the impact of
our findings on user-space apps through Proof-of-Concepts (PoC).

TABLE 3: High-level taxonomy of OEM customizations according to their role on TLS security

Acronym Category Description
CONN Connection and protocol management Functions for secure connection establishment, including selection and implementation

of TLS parameters to mitigate risks of downgrade attacks.
ACP Alternative cryptographic providers Use of alternative cryptographic providers like OpenSSL and BouncyCastle.
CFC Cryptographic functions and configurations Implementation and configuration of cryptographic algorithms, key management, and

cipher suites.
CryptP Cryptographic provider management Management and validation of cryptographic providers to ensure the use of secure and

trusted providers.
TRS Trusted root store Management of trusted root certificates for verifying authenticity of endpoints.
CertM Certificate management Developer support for managing certificates, including validation, blocklisting, pinning,

and revocation checking to ensure secure and trusted communications.
EV Endpoint verification Mechanisms for verifying endpoint identity and integrity, including hostname and

certificate validation.

insights into the actual instructions executed during run-
time. For each Java component, we apply our code diff-
ing algorithms to automatically identify changes both in
class signatures (e.g., function additions or removals) and
function implementations; Our pipeline classifies the code
changes into categories focusing on various programming
functions, including branching control flow (e.g., “if” and
“goto”); arithmetic and data manipulation (e.g., “add”
and “mul”); method invocation (i.e., “invoke” commands);
exception handling (e.g., “try-catch” structures); object
manipulation (e.g., “new-instance”); and synchronization
(i.e., “monitor” operations). The scale of the analysis
prevents us from manually inspecting every customized
function to detect logic-level customizations. Therefore,
we prioritize functions that, according to OpenJDK’s doc-
umentation, are most likely to influence TLS security.
Handling obfuscation and compiler artifacts. Identify-
ing TLS customizations through smali diffing presents two
challenges: obfuscation and compiler-introduced func-
tions. We observed obfuscation in 12% of analyzed sam-
ples, where OEMs demonstrate techniques such as junk-
code insertion, class splitting, function renaming, and
synthetic accessor functions. These techniques seen in
Huawei, Samsung, Xiaomi, and Nokia firmware, alter
code structure without modifying functionality.

Junk-code insertion inflates function sizes with re-
dundant operations (e.g., “nop” instructions, excess con-
ditional branches), making diffing more complex. Class
splitting distributes functions across multiple classes, fur-
ther complicating function matching and customization
tracking. Additionally, synthetic accessor functions pre-
fixed with “access$$”, “-get”, or “-wrap” add noise to
diffing, making it harder to distinguish OEM customiza-
tions from all identified customizations.

To minimize obfuscation impact, we apply keyword-
based detection to filter out non-relevant synthetic acces-
sors. For function renaming, we compare logic implemen-
tations to detect signature changes without functional dif-
ferences. Our diffing pipeline automatically merges split
classes, ensuring proper reconstruction before analysis. In
the cases analyzed in this paper, we manually verify that
obfuscation does not misrepresent OEM customizations.

4.3.2. Binary object diffing. We decompile JCA native
libraries such as BoringSSL for analysis, specifically: (a)
export symbol diffing, and (b) control-flow diffing. Export
symbol diffing reveals functions that are added or deleted,
while control-flow diffing detects the number of non-
matching basic blocks in Control Flow Graphs (CFGs)

compared to AOSP. If this number is significant (i.e., at
least five blocks), we manually inspect the changes.

In total, we extracted and analyzed 1,034 unique
(908,338 in total) binary objects. We use IDA Pro [27]
along with the Diaphora [67] plugin in headless mode
for decompiling the shared object files into C-like code
and performing the diffing analysis, respectively. The re-
sults are filtered out using heuristics to eliminate code
or function likely introduced by the decompiler or the
compiler. We exclude functions (i) without a symbol name
in the binary, (ii) that start with an underscore, (iii)
related to the unwind library, or (iv) that belong to either
ARM’s Application Binary Interface [40] or the GNU
toolchain [48]. We manually integrate into our filter a list
of (likely) hardware-specific functions used by high-level
languages that, for example, provide better alternatives for
arithmetic operations. These heuristics have a very small
impact on the number of filtered-out functions, varying
from 2% to 6% per object.

4.3.3. Trusted root CA store diffing. We use the
OpenSSL toolkit [80] to extract metadata from the 68,385
X.509 certificates found in the trusted root CA stores
of devices in our dataset. By comparing these extracted
X.509 certificates with those found in AOSP versions 9 to
14, we find certificates removed by Google at each release
due to expiration, compatibility issues, or loss of trust, as
well as those added by OEMs in their devices. We note
that we only analyze root stores from non-rooted devices
located in the default path for root CAs. This allows us to
gain a comprehensive view of the root store and mobile
PKI landscape across OEMs, spanning multiple Android
versions, and detect certificates appearing in a specific set
of OEMs. We investigate whether unremoved or newly
added CAs were excluded from AOSP due to a lack of
trust by correlating CA information with news articles,
AOSP change logs, and Mozilla’s TLS Observatory, all
of which document security events leading to the distrust
of these CAs. Furthermore, we analyze OEMs shipping
already expired certificates by the OS version release date.

5. Results

Our code diffing analysis shows that 80% of OEMs
modify at least one model from its corresponding AOSP
codebase. In this section, we address RQ1 by analyzing
these deviations across different TLS components, assess-
ing their security risks using the taxonomy in Table 3,
covering protocol configuration to endpoint verification.

TABLE 4: Unique OEM models with customizations im-
pacting each TLS security function category defined in
Table 3. In parentheses, we report the number of OEMs.

Category JSSE JCE JCA Root
StoreOkHttp Conscr. libssl libcryp.

CONN 67
(22)

1,940
(42)

755
(11)

- - -

CFC - - - 67 (9) 178
(36)

-

CryptP 16 (6) 6 (2) 760
(11)

- - -

TRS - - - - - 2,068
(274)

CertM 1,262
(7)

6 (2) 71
(12)

48 (8) 74
(12)

-

EV 16 (6) 1,707
(62)

15 (8) - - -

Overall, we identify 1,144 customized TLS APIs and
functions that are either absent, added, or logically modi-
fied in OEM TLS stacks. To systematically evaluate their
impact, we map the findings to threat scenarios defined in
Table 1, TN1 (Outdated TLS components), TN2 (Weak
encryption), TN3 (Insecure endpoint validation), and TA1
(App-level exploits). This framework allows us to assess
how specific TLS modifications increase exposure to net-
work adversaries and malicious apps. Section 6 evaluates
how the customized APIs compromise network security
guarantees of mobile apps on the Google Play Store.
Our results suggest that, while Google-certified OEMs
generally preserve JSSE class signatures for compatibility
(§7), all OEMs often customize lower-layer components
within JCE and JCA, as Table 4 shows. In contrast, non-
certified OEMs modify all layers of the stack.

5.1. Protocol and Connection Management

Our analysis reveals that 15.4% of OEMs modify
critical functions for TLS connection establishment and
protocol management in OkHttp (13.2% of OEMs) and
Conscrypt (3.5% of OEMs), as we describe next:
Ignoring clear-text traffic blocking policies: Android
allows developers to enforce app-specific policies using
the isClearTextTrafficPermitted boolean tag
in the manifest. When set to false, the OS blocks any
plaintext HTTP connections using the isClearTextT
rafficPermitted() method.

Our analysis reveals that MIUI Android 9 to 14
models include a distinctive OkHttp distribution —“miui-
okhttp”, based on Square’s [89]—that differs from AOSP
in class structure and function implementations. No-
tably, its isCleartextTrafficPermitted method
always returns true in the likely triggerable exception
(see Figure 3), disregarding developer-defined encryption
policies in MIUI devices (TN2, TA1). This poses a serious
risk, particularly for third-party advertising SDKs, where
developers have no control over data transmission [54, 87].
We developed a Proof-of-Concept to demonstrate this
vulnerability and responsibly disclosed it to Google’s An-
droid team [63], which escalated the issue to Xiaomi [97].
The case is under investigation, and we have agreed to
keep it confidential until April 17th, 2025.
Deprecated protocol support: We observe OEMs in-
consistently supporting deprecated AOSP OkHttp func-

% AndroidPlatform class
public boolean isCleartextTrafficPermitted(String hostname) {

try {
Class<?> networkPolicyClass = Class.forName("android.security.

NetworkSecurityPolicy");
Method getInstanceMethod = networkPolicyClass.getMethod("getInstance");
Object networkSecurityPolicy = getInstanceMethod.invoke(null);
Method isCleartextTrafficPermittedMethod = networkPolicyClass

.getMethod("isCleartextTrafficPermitted", String.class);
return (boolean) isCleartextTrafficPermittedMethod.invoke(

networkSecurityPolicy, hostname);
} catch (ClassNotFoundException | NoSuchMethodException e) {
return super.isCleartextTrafficPermitted(hostname);
} catch (IllegalAccessException | IllegalArgumentException |

InvocationTargetException e) {
throw new AssertionError();

}
}

% Platform class
public boolean isCleartextTrafficPermitted(String hostname) { return true; }

Figure 3: Exception handling in AndroidPlatform
class executes isCleartextTrafficPermitted.

tions for TLS protocol configurations. For example, the
Huawei Hol-U19 model running Android 9 keeps the su
pportTlsIntolerantServer function to establish
connections with endpoints supporting the deprecated and
insecure SSLv3 standard, which, if invoked, may expose
apps to the POODLE attack (TN1) [46, 68]. On a positive
note, later Huawei models follow AOSP.
Setting TLS protocol preferences: Five OEMs, including
Samsung and Redmi, customize JSSE, OkHttp, and Con-
scrypt functions for setting TLS protocol preferences. For
example, Samsung’s Galaxy Note 7 and 10+, and Yestel’s
X7-EEA, all running Android 9, omit classes added in
Android 7 like ConnectionSpec (OkHttp) with all
EnabledTlsVersions and allEnabledCipherS
uites functions, that enable app developers to use the
most recent TLS protocol versions and cipher suites. As
a result, apps on these devices may remain exposed to
outdated encryption risks (TN1, TN2) [5].
ALPN extension support: Conscrypt’s selectAppl
icationProtocol method in the ConscryptEn
gine class allows developers to manage performance-
security trade-offs by enabling protocols like HTTP/2
and SPDY through the TLS extension Application-Layer
Protocol Negotiation (ALPN). The ability to explicitly
define ALPN settings prevents attacks like the ALPACA
attack [2], i.e., forwarding a connection to a different
server (e.g., HTTP to FTP). Although developers can still
use HTTP/2 without ALPN, they lose the advantage of
automatic protocol negotiation, leading to sub-optimal se-
curity configurations. This function, integrated into AOSP
version 11, is missing in Android 11 versions of Redmi
Sweet-EEA and the Samsung A50 and A70 models.

5.2. Alternative Cryptographic Providers

To ensure the safe usage of cryptographic providers,
OEMs must properly maintain Conscrypt and BoringSSL
components [36]. However, many OEMs incorporate ad-
ditional cryptographic providers in their products, either
for legacy support or to enhance security:
• Oppo, Realme, and Alps use OpenSSL alongside Bor-

ingSSL to support legacy features and a broader feature
set through the CompatibilityHelper (Listing 9).
Unfortunately, these devices use outdated versions—
1.0.1j (October 15, 2014), and 1.0.1e (February

11, 2013)—which are vulnerable to over 60 known
vulnerabilities like CVE-2016-6304, exposing devices
to potential DoS attacks (TN1) [44].

• LGE and HTC (Android 9-13) integrate Libgcrypt,
a cryptographic library implementing robust functions
like SHA-256 and SHA-512 [28], used in products
like Google Home (Listing 10). Though the number of
CVEs is not a direct measure of security, Libgcrypt has
had a lower number of assigned CVEs compared to
OpenSSL, with 15 since 2013 [45].

• Samsung adds its proprietary Knox cryptographic li-
braries, i.e., libknox_encryption and libsecpk
cs11_engine.secsmartcard.samsung, which
work with TrustZone to secure sensitive data and sup-
port smartcard-based encryption [16] (Listing 11).

• Finally, 18 OEMs integrate libsoftkeymaster, a
software-based fallback for devices without hardware-
backed keystores, ensuring foundational security for
cryptographic operations and key management.

• Xiaomi, Redmi, and Poco extend BoringSSL with lib
advanced_crypto for key management and digital
signatures for secure operations like device tracking in
Xiaomi’s Find Device app (Listing 12).

5.3. Cryptographic Functions and Configurations

Over 180 device models (36 OEMs) customize
their BoringSSL distribution, leading to deviations
from AOSP’s cryptographic configurations. While some
changes may be performance-driven or intended for com-
patibility, others introduce security inconsistencies.
Cipher suite support: Six OEMs, including Vivo and
Blu, omit critical functions like EVP_aead_aes_256_
gcm_tls13, which define TLSv1.3 cipher suites in at
least 14 Android 10 and 11 models. This impacts TLS
security, as AES-GCM is widely used [68]. We note that
this removal may be deliberate, as devices lacking AES
hardware acceleration may benefit performance-wise from
using ChaCha20 [18]. Other Android 9 and 10 models
from Alps, Blu, Huawei, and Samsung offer deprecated
TLS functions like SSL_CIPHER_is_AESGCM and SS
L_CIPHER_is_CHACHA20POLY1305, all removed in
Android 9. While their presence does not inherently intro-
duce vulnerabilities, using outdated functions in modern
implementations could weaken security (TN1).
TLS cryptographic configurations: Several devices,
such as the Xiaomi POCO X3 Pro (Android 12), all
OnePlus models (Android 12-14), and Redmi Sweet EEA
(Android 13), lack two critical functions:
• The SSL_set_enable_ech_grease function im-

plements the Generate Random Extensions And Sustain
Extensibility (GREASE) mechanism in the Encrypted
Client Hello (ECH) extension. While ECH GREASE
does not directly protect SNI values, disabling it could
increase the risk of apps being affected by SNI-based
filtering. Some network intermediaries may misinterpret
GREASE extensions as anomalies, leading to unnec-
essary blocking [88]. Therefore, some OEMs might
disable this feature in response to such blocking and
limited consideration of its implications.

• The SSL_add_application_settings function
manages ALPN, enabling secure protocol handling like

% Standard AOSP implementation
invoke-static {}, Lsun/security/jca/Providers;->getFullProviderList()Lsun/

security/jca/ProviderList;
move-result-object v2
add-int/lit8 v4, p1, -0x1
invoke-static {v2, p0, v4}, L
sun/security/jca/ProviderList;->insertAt(Lsun/security/jca/ProviderList;Ljava/

security/Provider;I)Lsun/security/jca/ProviderList;

% Modified implementation with FIPS check for Zebra TC21 model
invoke-virtual {v1}, Ljava/lang/String;->equals(Ljava/lang/Object;)Z
move-result v2
if-eqz v2, :cond_1d
invoke-static {}, Ljava/security/Security;->isDeviceSupportFIPS()Z
move-result v2
if-nez v2, :cond_1d
const-string v2, "Device will Not Support SCFIPS"
invoke-static {v2}, Ljava/lang/System;->logE(Ljava/lang/String;)V
:try_end_1b
.catchall {:try_start_3 .. :try_end_1b} :catchall_39
monitor-exit v0
return v3

Figure 4: Comparison of provider integration methods. On
top, the standard AOSP method for integrating providers.
Below, the Zebra TC21 modification for FIPS support.

HTTP/2. While ALPN is primarily a performance opti-
mization rather than a security control, its removal limits
developer flexibility in handling secure connections [2].

Other devices similarly lack key functions for crypto-
graphic configuration and management:
• Several Realme and Samsung Galaxy Android 9-10

models lack cryptographic functions, EVP_aead_ae
s_128_gcm_siv and EVP_aead_aes_256_gcm_
siv introduced in AOSP following RFC 8452 to mit-
igate AES encryption attacks in GCM-SIV mode [72].
While AES-GCM-SIV offers nonce misuse resistance,
its absence may indicate performance trade-offs.

• Several Oppo and OnePlus models running Android 13
lack the EVP_hpke_x25519_hkdf_sha256 func-
tion implementing HPKE using X25519 and HKDF-
SHA256. This function combines X25519 for fast key
generation with HKDF-SHA256 to produce strong en-
cryption keys, which is important for modern key ex-
change protocols, including TLS 1.3 ECH.

5.4. Cryptographic Provider Management

Cryptographic provider management allows develop-
ers to select, configure, and maintain secure cryptographic
providers for TLS connections. Our analysis finds at least
14 OEMs with either security downgrades or enhance-
ments in the Java layers and 13 OEMs introducing errors
in their Conscrypt JNI implementations.
Legacy cryptographic provider support: Two Samsung
models implement the deprecated functions getInsta
nceFromCryptoProvider and setSdkTargetF
orCryptoProviderWorkaround. These functions
manage access to the deprecated CryptoProvider and
were removed from AOSP in version 7 as it is vulnerable
to the “SecureRandom” bug (TN1) [82].
Ciphersuite order preference: Conscrypt’s SSLParame
tersImpl class introduces the setUseCipherSuite
sOrder function in AOSP version 7 to allow developers
to override the default cipher suites and protocol param-
eters defined in JSSE (TN2). However, this function is
missing in the Allwinner T3 running Android 10.
FIPS support: The Zebra TC21 (Android 10) includes the
isDeviceSupportFIPS function to verify whether

% Vulnerable JNI implementation
EVP_CIPHER * FUN_0000a2dc(undefined4 param_1)
{
char *local_14;
FUN_0000a14e(auStack_1c,param_1);
if (strcasecmp(local_14,"rc4") == 0) return EVP_rc4();
if (strcasecmp(local_14,"des-cbc") == 0 || strcasecmp(local_14,"des-ede-cbc

") == 0)
return EVP_des_cbc();

}

% AOSP patch for CVE-2016-6709
EVP_CIPHER * NativeCrypto_EVP_get_cipherbyname(_JNIEnv *param_1, _jclass *

param_2, _jstring *param_3)
{
char *__s1 = (**(code **)(*(int *)param_1 + 0x2a4))(param_1,param_3,0);
if (strcasecmp(__s1,"rc4") == 0) return EVP_rc4();
if (strcasecmp(__s1,"des-cbc") == 0) return EVP_des_cbc();
if (strcasecmp(__s1,"des-ede-cbc") == 0) return EVP_des_ede_cbc();

}

Figure 5: Conscrypt JNI vulnerability, CVE-2016-6709.
On top, the incorrect mapping of 2-key 3DES to regular
DES leads to information disclosure. Below, the patch
implemented in AOSP.

the BouncyCastle complies with the NIST FIPS stan-
dard (see Figure 4). While AOSP only allows provider
insertion, Zebra introduces this method to meet Common
Criteria certifications and security requirements from gov-
ernment agencies [99]. This device also includes Stripy-
Castle [43], a FIPS-compliant provider, further supporting
the inclusion of isDeviceSupportFIPS.
Conscrypt JNI implementation: Conscrypt’s JNI code
analysis reveals that the libjavacrypto.so present
in 30 OEM devices, remains vulnerable to CVE-2016-
6709 [11]. This flow could expose sensitive data when
an app uses legacy encryption APIs (TN1). Although this
vulnerability was fixed in Android versions 6.0, 6.0.1, and
7.0, certain Alps models and even Google-certified models
from Samsung and BMXC still use outdated JNIs, along-
side OpenSSL’s X.509 and BoringSSL (see Figure 5).

5.5. Trusted Root Store

The trusted root store contains default trusted certifi-
cates for a device. We found 274 OEMs who modified the
root store by adding or removing certificates.
Non-AOSP certificates: Several OEMs add root CA cer-
tificates issued by organizations like UserTrust Network,
Digital Signature Trust, and SecureSign, which are un-
trusted by AOSP and audited root stores like Mozilla. For
instance, the Alps Android 9 root store contains 84 non-
AOSP certificates, 18 of which were expired upon release.
The additions include certificates issued by TrustCor, a CA
with ties to US intelligence services, distrusted by Mozilla
and Microsoft for signing malicious certificates [93]. On
average, OEMs add 25 non-AOSP certificates to Android
12, while non-certified OEMs add more.
Presence of removed and expired certificates: We found
117 OEMs including 69 AOSP-removed certificates in
their trusted root CA store. “AOSP-removed certificates”
are those present in AOSP version X, but removed in
subsequent AOSP versions X+1 due to expiration or trust
issues. In 85% of OEMs, these certificates persist in later
Android versions (X+1, X+2, etc.), showing failure in
root store updates (see Figure 6). We also find cases
where AOSP removed certificates after version 8, yet these
remain in use on devices running versions 12-14. Prior

Figure 6: Number of OEMs retaining certificates removed
from AOSP in previous versions. The left side shows the
last AOSP version in which a certificate was included,
while the right side represents later OEM versions where
the same certificate is still present. This indicates the
number of OEMs that did not update their root stores.

work links expired certificates in websites to poor security
posture and outdated servers with known CVEs [83].
Untrusted certificates: Beyond the TrustCor case men-
tioned above, we find well-known untrusted root certifi-
cates in several Android models. Two Comodo certificates,
removed after Android 8, remain in 116 OEMs, including
major brands like Samsung, Sony, LGE, and HTC. These
certificates were compromised in a 2011 incident when an
Iranian threat actor breached Comodo’s infrastructure and
issued malicious certificates for Google, Yahoo, and Mi-
crosoft [96]. Consequently, Comodo lost trust within the
PKI ecosystem, and its certificates were removed from the
trusted root stores of major browsers. Yet, we find these
certificates across all Android versions in our dataset, with
44% found on Android 11 devices (2020). Their continued
presence is concerning (TN3), as connections using such
certificates will be treated as “normal.”

5.6. Certificate Management

The widespread presence of rogue, expired, and un-
trusted certificates in root CA stores requires app devel-
opers to verify TLS certificate validity proactively. How-
ever, 12 OEMs remove key JSSE, Conscrypt, BoringSSL,
and OkHttp functions for managing certificates, impacting
certificate blocklists, pinning verification, chain strength
analysis(i.e., key length and signature algorithm secu-
rity), OCSP (Online Certificate Status Protocol) support,
SCT (Signed Certificate Timestamp) verification, and trust
chain construction. While these removals are prevalent in
Android 9 models, they are also present in some Android
11 devices from Motorola, Infinix, and Poco.
OCSP support. Several devices integrate BoringSSL
functions to query OCSP [74] and verify X.509 certificate
revocation status. OCSP_BASICRESP_delete_ext, O
CSP_response_status, d2i_OCSP_P_CRLID, OC
SP_REVOKEDINFO_new, and OCSP_REQ_CTX_free
functions were added into 44 Android 9 and 10 models
from Samsung, Advan, Verizon, and Alps. All these func-

tions are taken from OpenSSL, indicating intentional use
for compatibility with legacy systems. Yet, apps running
on non-certified OEMs like Alps cannot process OCSP
responses due to the lack of key functions like SSL_
enable_ocsp_stapling, making them vulnerable
to expired or revoked certificates (TN3) [56]. Similarly,
some Samsung models running Android 9-10 also miss
the SSL_set_ocsp_response function introduced in
BoringSSL with Android 8. In these cases, app developers
are forced to manually handle certificate status checks,
which increases the risk of improper validation (TN3).
As a result, revoked certificates might still be accepted
during the caching window.
Certificate blocklisting and pinning. Several OEMs lack
support or introduce new functions for certificate block-
listing and pinning operations:
• Samsung Galaxy S23 and Yestel X7-EEA miss Con-

scrypt’s checkChainPinning function for checking
if a certificate chain includes pinned certificates.

• Allwinner T3 model running Android 10 lacks critical
Conscrypt functions, including isCTVerification
Required, checkKeyLength, checkSignatur
eAlgorithm, getOCSPResponse, setOcspRes
ponses, isCTVerificationEnabled, and veri
fyChain. Without these functions, app developers face
limitations in secure certificate management, reducing
their ability to enforce proper certificate validation. As
a result, apps may unintentionally accept fraudulent or
improperly validated certificates, making them vulnera-
ble to person-in-the-middle attacks (TN3) [47, 56].

• Some Alps models running Android 10 lack the OkHttp
setCertificatePinner and getCertificate
Pinner methods to specify trusted CAs. Therefore,
apps must rely on the default root CAs chosen by the
OEM (TN3) [53]. This is concerning due to the presence
of untrusted certificates in the Alps’ root stores (§5.5).

• Honeywell has taken proactive steps to enhance the
device and user safety. For instance, Honeywell Android
12 models use the getForceDisabledSystem
Cert function within Conscrypt’s TrustedCerti
ficateStore class, to retrieve system certificates
explicitly marked as “force disabled.” These certificates
are blocked from being trusted or reinstalled, thereby
protecting the system from trusting disabled certificates.

5.7. Endpoint Verification

Endpoint verification is crucial for ensuring that TLS
clients connect only to trusted and verified endpoints. We
find 1,721 device models with varying implementations
of endpoint verification across JSSE and JCE. We next
describe some relevant cases:
• The Android 10 Allwinner T3 model lacks the setD
efaultHostnameVerifier method that prevents
developers from overriding the default HttpsURLCo
nnection hostname verifier. This limitation makes
it challenging to enforce custom hostname verification
rules stricter than those outlined in RFC 2818 (TN3) [8].

• Several Samsung and Yestel models running Android 9
lack the OkHttp setDNS method, limiting app devel-
opers’ ability to override the default DNS configuration,
hence increasing the risk of DNS spoofing (TN3) [64].

• In its Android 12 release, OkHttp introduced the isPri
ntableAscii method in the OkHostnameVerifi
er class to address CVE-2021-0341 [12]. This function
rejects non-ASCII hostnames and Subject Alternative
Names (SANs) to ensure that domain names in X.509
certificates follow IDNA 2008 rules, thus protecting
apps from DNS spoofing and name collision exploits.
Interestingly, several Android 9 to 11 models from
Samsung, Vivo, Nokia, and Xiaomi already incorporate
this function, indicating that some OEMs take proactive
patching measures against this attack.

5.8. Other Interesting Customizations

Vivo devices running Android 13 introduce two
security-enhancing features that bridge TLS APIs with the
Android permission model to block unauthorized access
to permission-protected system resources:
• The isEmail function in JSSE’s Socket class ver-

ifies whether a port number matches standard email
protocols—SMTP (25), POP3 (110), or IMAP (143).
Consequently, only if the app has been granted the
dangerous SEND_EMAIL permission to access email
services will the connection be authorized.

• The NetworkInterface.shouldProtectMac
function adds a conditional control layer for accessing
the MAC address of the wlan0 (WiFi) interface. While
Android 10 already restricts MAC address access to
system apps, Vivo’s implementation integrates VivoPe
rmissionManager for extra security checks. Specif-
ically, Vivo ensures that the returned MAC address of
any interface is protected through randomization if the
location of the users is China, WiFi randomization ad-
dress is not set, or the app requesting access is a system
app using the isOverseas method (see Figure 8). In-
terestingly, the method is implemented using reflection,
which opens additional security concerns [57] as the
policy could be adjusted or bypassed dynamically. We
are unable to explain the reason behind this discrimina-
tion against Chinese customers.

6. Impact of Customizations on Developers

The OEM customizations reported in §5 introduce
TLS API fragmentation and inconsistencies that could
cause user-installed apps to raise exceptions, behave un-
predictably, or crash. In this section, we explore RQ2
by analyzing how these deviations impact real-world app
functionality and security. The most critical modified TLS
methods identified in §5 influence the following areas:
1) Enforcing encrypted traffic (e.g., OkHttp’s isHttp

s), which, if not properly handled, leaves apps vulner-
able to eavesdropping or person-in-the-middle attacks
across approximately 1,900 Android models.

2) Defining TLS parameters (e.g., JSSE’s setSSLPara
meters), making it hard for developers to configure
secure protocol negotiations, potentially leaving users
of around 760 models exposed to protocol downgrade
and cross-protocol attacks like POODLE.

3) Performing certificate (e.g., JSSE’s X509Certifica
te.verify) and endpoint (e.g., JSSE’s setSNIMa
tchers) validation, weakening apps’ ability to verify

TABLE 5: Usage of missing TLS APIs by Android apps.
Impact API #Apps (Installs)
JSSE
CertM L/java/security/cert/X509Certificate/verify 14,520 (676B)
CFC Ljava/security/spec/EllipticCurve/checkValidity 9,705 (340B)
EV Ljavax/net/ssl/SSLServerSocket/setSSLParameters 735 (10B)
EV Ljavax/net/ssl/SSLParameters/setEndpointIdentificationAlgorithm 765 (14B)
EV Ljavax/net/ssl/SSLServerSocket/getSSLParameters 706 (9B)
EV Ljavax/net/ssl/SSLParameters/setServerNames 338 (7B)
CONN Ljavax/net/ssl/SSLParameters/setAlgorithmConstraints 99 (6B)
CryptP Ljavax/net/ssl/SSLParameters/setUseCipherSuitesOrder 94 (1B)
EV Ljavax/net/ssl/SSLParameters/setSNIMatchers 91 (1B)
EV Ljavax/net/ssl/SSLParameters/getEndpointIdentificationAlgorithm 48 (1B)
CONN Ljavax/net/ssl/SSLParameters/getAlgorithmConstraints 21 (949M)
EV Ljavax/net/ssl/SSLParameters/getServerNames 24 (144M)
CertM Ljava/security/cert/CertPathValidator/getRevocationChecker 41 (292M)
CertM Ljava/security/cert/CertPathBuilder/getRevocationChecker 41 (292M)
EV Ljavax/net/ssl/SSLParameters/getSNIMatchers 17 (345M)
OkHttp
CONN Lokhttp/Response/handshake 1,389 (14B)
CONN Lokhttp/Request/isHttps 1,200 (28B)
CONN Lokhttp/OkHttpClient/getDefaultSSLSocketFactory 1,184 (4B)
CONN Lokhttp/internal/Platform/configureTlsExtensions 1,151 (4B)
CertM Lokhttp/OkHttpClient/getCertificatePinner 1,092 (23B)
CertM Lokhttp/Address/getCertificatePinner 1,092 (23B)
CONN Lokhttp/OkHttpClient/getProtocols 1,092 (23B)
CONN Lokhttp/Address/getProtocols 1,092 (23B)
CertM Lokhttp/internal/Platform/trustRootIndex 934 (5B)
CONN Lokhttp/OkHttpClient/setFollowRedirects 136 (334M)
CONN Lokhttp/internal/platform/Platform/isClearTextTrafficPermitted 112 (898M)
EV Lokhttp/internal/tls/OkHostnameVerifier/allSubjectAltNames 61 (394M)
CONN Lokhttp/internal/Platform/getSelectedProtocol 61 (394M)
CONN Lokhttp/Route/requiresTunnel 61 (394M)
CONN Lokhttp/OkHttpClient/setConnectionSpecs 84 (154M)
CONN Lokhttp/Connection/getHandshake 14 (120M)
CONN Lokhttp/OkHttpClient/setProtocols 72 (86M)
EV Lokhttp/OkHttpClient/setDns 6 (53M)
CryptP Lokhttp/ConnectionSpec/allEnabledCipherSuites 1 (904K)
CONN Lokhttp/ConnectionSpec/allEnabledTlsVersions 1 (904K)
Conscrypt
CONN Lcom/android/org/conscrypt/Conscrypt/exportKeyingMaterial 1 (666K)

certificates and endpoints in about 1,200 devices. This
weakness is amplified by the presence of untrusted root
certificates (e.g., TrustCor and Comodo) in 274 OEMs
(74% of all OEMs), increasing network security risks.
To estimate the number of affected apps, we statically

study the code of 20k mobile apps published on Google
Play for statements invoking any of the 1,144 customized
APIs found in §5. Over 75% of the analyzed apps rely on
at least one modified or missing TLS function. Table 5
reports the most used customized APIs, and their impact
area (per Table 3), highlighting the number of apps that
depend on them and apps’ cumulative install count. We
observe that APIs for certificate management X509Cert
ificate.verify (JSSE) and endpoint verification Re
sponse.handshake (OkHttp) are invoked by 73% of
the analyzed apps, confirming their critical role in ensur-
ing secure communications in the Android ecosystem.

Unfortunately, TLS API customizations force devel-
opers to implement complex workarounds for certificate
verification on phones without these methods or lacking
recent TLS extensions or standards, which can increase
security risks. More importantly, developers unaware of
these undocumented modifications simply expose their
users and apps to security risks across Android devices.

6.1. Case studies

Below, we present examples of six relevant apps that
demonstrate how TLS API fragmentation affects function-
ality and security. We triage and manually examine the
cases with the highest potential security impact according
to AOSP documentation, focusing on how developers miti-
gate issues. This section does not aim to provide a compre-
hensive function dependency analysis but highlights how
developers handle or fail to address API fragmentation.
Potential functional and security errors:

• Board Kings (52M installs). This game uses the ch
eckValidity function to validate server-side cer-
tificates before proceeding with encryption operations
(see Figure 13). If the certificate is invalid, it throws an
exception caught and re-thrown as InvalidKeyExce
ption, preventing encryption with invalid certificates
and allowing graceful error handling. Without check
Validity, the app risks failure as the app developer
has not accounted for this scenario.

• Xiaomi Home (59.5M installs). This app uses the h
andshake function in OkHttp’s Response class to
securely access SSL/TLS handshake parameters, includ-
ing negotiated protocol and cipher suite (see Figure 14).
Without this function, the app risks compromising con-
nection security, as the readNetworkResponse
method fails to retrieve handshake details. Since this
function lacks specific exception handling, the app may
unknowingly use insecure encryption.

• Mintegral SDK. This popular advertising SDK—
package name com.mbridge.msdk— calls isCl
eartextTrafficPermitted function from Pla
tform class in OkHttp to check the clear-text policy
defined by the app developers on the Android Manifest
file. In the case of MIUI devices (§5.1), this function
always returns True, allowing clear-text traffic for all
hostnames. When RealConnection.connect()
invokes this function, clear-text traffic will be allowed,
thus exposing users’ data to eavesdropping (see Fig-
ure 15). When isCleartextTrafficPermitte
d returns True, the connect method does not throw
an exception for clear-text traffic. This finding confirms
that the OkHttp vulnerability found on MIUI devices
may impact a large number of users, given Mintegral’s
estimated high presence in mobile apps [87].

Correct fragmentation handling and management:
• Temple Run 2 (1.05B installs). This game exemplifies

developers’ awareness of TLS fragmentation issues and
good practices. It calls the verify method (class j
ava.security.spec.EllipticCurve) to en-
sure a certificate is correctly signed by its issuer (see
Figure 16) as part of the isValidLink method for
checking certificate chain integrity. If unsupported, it
throws a GeneralSecurityException, correctly
caught by the app, with isValidLink returning false.

• IM ShareChat (503M installs). This app uses setSSL
Parameters and setEndpointIdentificatio
nAlgorithm methods to enforce TLS parameters and
hostname verification (see Figure 17). If unavailable, it
catches NoClassDefFoundError and NoSuchMe
thodError exceptions, retrying if httpsHostnam
eVerificationEnabled is true; hence keeping a
secure connection by enforcing TLS settings and host-
name verification even if standard methods are absent.

• Citibank Mobile (10M installs). The app checks certifi-
cate revocation status via OCSP using getRevocat
ionChecker from java.security.cert.Cer
tPathValidator (see Figure 18). If the method is
unsupported, the app throws a NoSuchAlgorithmEx
ception, which it catches and returns false, signaling
the failure to perform the OCSP check and proceeding
with further certificate validation processes.

Third-party TLS libraries. Some app developers rely

TABLE 6: Samsung (S) and MIUI (M) models deviating from AOSP v9 to v13. Dashes (-) indicate that there are no
customizations related to those listed on Table 3 taxonomy.

Version JSSE Conscrypt OkHttp JCA Root Store
S M S M S M S M S M

9 0.8% 0.3% 0.6% - 2.1% 100% 3.8% 0.6% - 3.8%
10 50.6% - 50.1% 0.5% 53.0% 100% 1.6% 0.2% - 0.5%
11 30.2% 0.2% 0.1% - 30.2% 100% 0.1% - 0.5% 0.9%
12 12.1% - - - 12.1% 100% - 0.6% 0.9% 7.5%
13 - - - - - 100% 0.7% - 2.2% 58.3%

on alternative open-source TLS libraries like Volley [33],
Retrofit [32], or Facebook Fizz [52] rather than using
standard APIs. In our study of 20k Android apps from
the Google Play Store, we find that 18% of the studied
apps integrate Volley, 33.5% Retrofit, and only 0.1% use
Facebook Fizz. It is unclear, however, if these libraries can
reduce the risks caused by API fragmentation. Through
code inspection of their open-source projects, we find that
newer versions of both Volley and Retrofit still rely on
JSSE and OkHttp, which can be customized by OEMs.
While these dependencies may now have a limited impact
on overall app security, they still raise concerns. The self-
contained nature of Fizz (based on OpenSSL) makes it
potentially safer for developers.

7. OEM Motivations, Selective Patching, and
Compliance Challenges

This section explores potential motivations behind
OEM TLS customizations and will examine how these
motivations contribute to fragmented security updates and
deviations from AOSP standards using real-world case
studies from our study. In addressing RQ3, we evaluate
the effectiveness of Google’s CTS/CDD enforcement and
address its inconsistencies. Finally, we discuss potential
mitigation strategies including stronger compliance en-
forcement, transparency tools, and regulatory measures.

7.1. OEM Motivations for TLS Customizations

OEMs could customize the TLS stack for a multitude
of reasons, often with the target of balancing security, per-
formance, and compatibility. While some of these modifi-
cations might be necessary for device functionality, others
introduce fragmentation and security risks. Unfortunately,
we do not have public information as to the exact reason
for these customizations, yet our analysis identifies three
potential primary motivations behind customizations.
Legacy Support and Compatibility: OEMs continue
using older cryptographic libraries despite the availability
of more secure alternatives. Our analysis identifies mul-
tiple devices that still ship with outdated OpenSSL ver-
sions, with few retaining support for SSL v3, which was
deprecated in 2015 due to known vulnerabilities (§5.1).
By analyzing these deviations across multiple Android
versions, we observe this trend more in older Android
devices, likely due to extended firmware updates that are
misaligned with AOSP upstream changes.
Prioritization and Selective Updates: Our analysis re-
veals that OEMs selectively update TLS components
rather than apply uniform updates across all layers and

all their devices, leading to fragmented security postures
even within the same Android versions and products.

We observe several devices with incomplete transitions
from Android 10 to 11, where JSSE aligns with AOSP but
Conscrypt is outdated. For example, the Samsung Galaxy
A50 (SM-A505G) and A70 (SM-A7050) both exhibit 33
missing Conscrypt function updates. Similarly, Realme
RMX3701 (REE2ADL1) running Android 13 shows miss-
ing updates in JSSE, while other TLS components re-
main up-to-date. Since our dataset includes many other
models from these OEMs, we can conclude that OEM
update strategies are not uniform across their product
lines. Instead, our empirical results reveal that patching
decisions may be influenced by internal prioritization,
resource constraints or product segmentation strategies.
Finally, some OEMs disable cryptographic mechanisms
for compatibility reasons. For example, the removal of
GREASE support—from Oneplus and Redmi devices—
for Encrypted Client Hello (ECH) may result from net-
work interoperability concerns, reflecting how usability is
sometimes prioritized over enhanced security (§5.3).
Regional Policies: Prior work has shown that OEMs in-
corporate regional or government requirements primarily
within the trusted root store, where certificates are added
to comply with local and government regulations [94]. Our
analysis shows that these region-specific modifications
may extend beyond the root store to core Java packages
within the TLS stack. For example, in China, Vivo trig-
gers an additional security measure that randomizes MAC
addresses to enhance user privacy (§5.8).

7.2. OEM Patching Practices

AOSP maintainers regularly update the TLS stack to
patch vulnerabilities and support new standards. However,
our analysis shows that OEMs—except for Google Pixel
devices—do not necessarily follow upstream, possibly
for the reasons discussed in §7.1. This selective patch-
ing results in incomplete security updates across 2,539
models (16%) from 85 OEMs, fragmenting TLS security
even among the same Android version. Despite Google’s
project Treble [19], some OEMs still introduce security-
degrading deviations, raising concerns about the overall
effectiveness of compliance mechanisms(§7.3).
Case study: Samsung vs. MIUI. We compare the patch-
ing strategies of Samsung and MIUI to exemplify varying
approaches at both the vendor and product levels. MIUI
and Samsung jointly account for over 50% of the global
Android market share [9]. Table 6 shows the percentage
of models deviating from AOSP for each layer of the
TLS protocol stack, broken down by Android version.
A general observation is that Samsung and MIUI follow

TABLE 7: CDD violations across OEMs and models.
Policy % Models

(OEMs)
Example

3.1. MUST ship with each and every non-SDK interface on the same restricted lists as provided via the provisional and denylist
flags in prebuilts/runtime/appcompat/hiddenapi-flags.csv path for the appropriate API level branch in the AOSP. (Focusing on
interface availability)

2.4 (6.7) Realme
RMX3710

3.1. MUST ship with each and every non-SDK interface on the same restricted lists as provided via the provisional and denylist
flags in prebuilts/runtime/appcompat/hiddenapi-flags.csv path for the appropriate API level branch in the AOSP.

4.7 (27.1) Xiaomi
Nitrogen

3.1. MUST provide complete implementations, including all documented behaviors, of any documented API exposed by the
Android SDK or any API decorated with the “@SystemApi” marker in the upstream Android source code.

1.2 (5.8) Redmi
C55

3.2.2. To provide consistent, meaningful values across device implementations:VERSION.RELEASE, The version of the currently
executing Android system, in human-readable format.

<9 (6.0) Oppo
CPH2145

9.8.4. MUST preinstall the same root certificates for the system-trusted Certificate Authority (CA) store as provided in the upstream
Android Open Source Project.

36 (85.0) Samsung
A52Q

different strategies: Samsung models show greater vari-
ability across all components, whereas MIUI exhibits a
consistent approach in customizing OkHttp across their
models. Additionally, MIUI shows an increasing number
of modifications to the root store across Android versions.
Despite the uniform base of MIUI’s OkHttp, individual
MIUI brands still exhibit distinct customizations, con-
tributing to fragmentation. These differences highlight the
lack of a standardized patching approach across OEMs, as
Samsung’s approach leads to inconsistent patching, while
MIUI’s centralized structure lacks cross-brand uniformity.

7.3. CDD and CTS Effectiveness

Certified OEMs must comply with CDD guidelines
and pass CTS, yet we observe partial non-compliance.
This section focuses only on Google Play-certified de-
vices [60], meaning all examined models have passed
CTS at some point. Despite this certification, we find
that CDD compliance does not ensure secure TLS im-
plementations. Table 7 describes TLS stack-related CDD
compliance across Android versions 9-14. Since these
policies have remained unchanged, any non-compliance
we observe can be attributed to OEM choices rather than
CDD variations. This supports our argument that while
CDD enforces compatibility, it does not prevent security-
degrading customizations. Our analysis shows that 85% of
OEMs fail to properly maintain system trust store, at least
9% of OEMs provide inconsistent versioning information
(e.g., popular devices like Redmi C55 and OnePlus 7 Pro)
and 27% of OEMs violate blocklisting and public/private
API restrictions (e.g., Xiaomi Nitrogen), introducing in-
consistencies even in Google-certified devices.

Google’s own research confirms that passing CTS does
not guarantee full CDD compliance [76], as CTS primarily
ensures compatibility rather than enforcing strict security
policies. As a result, OEMs can pass CTS while still intro-
ducing TLS-related deviations. While project Treble and
the accompanying Vendor Test Suite (VTS) [19] improved
API compliance and reduced fragmentation, they do not
address critical security issues such as JCA modifications,
trust store inconsistencies, and protocol-level deviations.
These gaps necessitate stricter compliance enforcement
and increased transparency.

7.4. Mitigation Techniques and Transparency

We note that security-degrading customizations have
declined since Android 12, likely due to Treble’s enforce-
ment of API compliance. However, TLS inconsistencies

persist. For certified OEMs, extending the CDD validation
to explicitly test for secure TLS configurations could help
mitigate these inconsistencies. Strengthening certificate
validation, enforcing TLS version deprecation, and en-
suring compliance with modern cryptographic standards
would ensure a baseline security requirement. Expand-
ing CTS tests—shown feasible by our work—to detect
functional integrity and native dependencies could further
reduce fragmentation while increasing security guarantees.

For non-certified OEMs, where Google lacks authority,
stricter regulatory controls could enforce baseline security
standards. For example, the 2024 EU Cyber Resilience
Act (CRA) presents mandatory requirements for con-
nected devices, ensuring vulnerability management, timely
updates, and supply chain security, thereby ultimately re-
ducing fragmentation [7]. Expanding such frameworks to
include specific requirements like trust store maintenance
and cryptographic standards would further strengthen the
security posture for devices entering regulated markets.

Beyond these compliance enforcements, enhanced
transparency on OEM customizations would allow de-
velopers and users to mitigate security risks at both
app and device levels. Public findings—such as this
study—could help developers implement countermea-
sures like certificate pinning, disabling weak TLS ver-
sions, and enforcing explicit endpoint validation. Expand-
ing tools like FirmwareScanner to assess TLS security
posture—highlighting outdated cryptographic implemen-
tations, weak ciphers, or insecure CAs—would increase
user awareness of OEM security practices. Addressing
TLS fragmentation requires standardization, stricter com-
pliance enforcement, and increased transparency to ensure
consistent security across the Android ecosystem.

8. Related work

Prior work analyzed the security risks associated
with the lack of control over OEM customizations, from
the presence of privacy-intrusive SDKs embedded in
preloaded apps and malware to insecure open ports and
malicious host files [34, 58, 59, 62, 65, 71, 91, 100].
Elsabagh et al. highlighted the lack of transparency in
OEM’s supply chains by showing evidence of privilege-
escalation in preloaded apps, enabling unauthorized code
execution and PII access [51]. Gamba et al. revealed pri-
vacy and security threats on preloaded Android apps [59],
while a large-scale study by Hou et al. found widespread
patch delays in 31.4% of firmware images and vulnerabil-
ities across 8,325 firmware images from 153 OEMs [62].

Despite extensive research on the system and app
level, only a few studies examine OEM modifications at
the TLS stack level. El-Rewini et al. identified access
control vulnerabilities in residual APIs, making devices
susceptible to severe threats such as DoS attacks [50].
Possemato et al. analyzed customized Android binaries
against Google’s CDD, revealing loopholes within the
Google compliance test but did not study their effects
on secure communication [84]. Other studies identified
security weaknesses at the kernel level, such as unpriv-
ileged apps gaining unauthorized access to device sen-
sors [100, 101]. Mayrhofer et al. provided an overview
of the Android security model, partially discussing CTS
coverage but without addressing TLS considerations [75].

Lee and Wallach found vulnerabilities in BoringSSL’s
codebase but didn’t analyze the security threats of
OEMs’ customizations [70]. Two studies analyzed OEMs’
customizations of device-trusted root stores. Vallina-
Rodriguez et al. showed in 2014 how opaque CAs linked
to mobile operators or government agencies compromised
root stores until Android 4.4 [94]. They discussed how
these practices disrupt the audited root store model in
AOSP and revealed TLS interception via HTTPS prox-
ies. Ma et al. found that OEMs delayed removing high-
severity CA certificates by over a year [73].

Our study expands on prior work by analyzing OEM
modifications across all stack components, with a focus
on their impact on secure communication. While previ-
ous research extensively analyzed system-level customiza-
tions such as kernel security, SE Linux policies, and
application-layer risks, the impact of OEM modifications
on the TLS protocol stack remains largely unexplored.
Our research addresses this gap by providing empirical
evidence of how these modifications introduce real-world
security risks. Hence, our study holds OEMs accountable
by providing large-scale empirical data on TLS deviations
and offers developers actionable insights to mitigate these
risks through stricter security controls at the app level.

9. Limitations and Future Work

Our data collection and black-box approach may limit
the scope and depth of our findings. Yet, this method is
enough to show concerning practices in OEM’s protocol
stack customizations and the lack of control over the
supply chain. While our dataset spans from Android 9 to
15, newer versions like 15 are under-represented due to
their limited deployment: as of now, there is just one stable
release of Android 15. Furthermore, as outlined in §4.2,
baselines were established using a best-effort approach,
but this could introduce errors from misreported system
build data by OEMs. We also encountered difficulties in
decompiling core components (see Table 8) from several
OEM devices due to corrupted files, use of obfuscation,
and missing dependencies. The analysis of shared objects
(.so) files was restricted to symbol trees, strings, and
source file names as we lack official documentation for
vendor-specific APIs. Similarly, as the contextualization
of the results requires manual inspection, our analysis
focuses on those methods more likely to influence apps’
security according to OpenJDK documentation. The anal-
ysis in §6 highlights examples of API usage impacted by

customizations found in §5, but it does not provide a sys-
tematic study of app dependencies. Finally, while certain
CDD policies cover aspects related to native libraries, we
left them out of scope for this study.

10. Conclusion

This paper presents the first large-scale study of OEM
customizations in the Android TLS protocol stack and
their impact on app security and API consistency. Our
analysis reveals that critical modifications mainly affect
JCA and root CA stores, while JSSE and JCE class
signatures remain largely intact due to Google’s CTS
checks. We show that OEMs often lag on AOSP updates,
which negatively affects apps’ default network security
and forces developers to make cautious use of TLS APIs.

While Google’s CDD guidelines and CTS checks may
deter OEM customizations to some extent –particularly
OEMs with an interest in having their devices Google-
certified–, TLS stack discrepancies remain, raising com-
pliance and security concerns. We discussed potential root
causes and mitigations, motivating the need for raising
developer awareness, stricter supply-chain controls and
patching processes, and more effective certification tests
and compliance guidelines.

Acknowledgments

We thank the reviewers and the shepherd for their
valuable feedback and suggestions for improving our
paper. We also thank Suraj K. Suresh (University of
California, Santa Barbara), Aniketh Girish, and Nipuna
Weerasekara (IMDEA Networks Institute, Spain) for their
help in the firmware analysis process. This work was
motivated by discussions at the Dagstuhl seminar “EU Cy-
ber Resilience Act: Socio-Technical and Research Chal-
lenges” (24112) in 2024. This research was partially sup-
ported by the Spanish AEI grants PID2022-143304OB-
I00 (PARASITE) and PID2022-140126OB-I00 (CYCAD),
both funded by MCIN/AEI/10.13039/501100011033/ and
by the ERDF, EU. It was also partially supported by the
Spanish National Cybersecurity Institute (INCIBE) under
Proyectos Estratégicos de Ciberseguridad – CIBERSE-
GURIDAD EINA UNIZAR under the Recovery, Trans-
formation and Resilience Plan funds, financed by the Eu-
ropean Union (Next Generation). Vinuri Bandara’s work
has been funded by Comunidad de Madrid predoctoral
grant PIPF-2023/COM-31195. Prof. N. Vallina-Rodriguez
was appointed as 2019 Ramon y Cajal fellow (RYC2020-
030316-I) funded by MCIN/AEI/10.13039/501100011033
and ESF Investing in your future. We used OpenAI’s
ChatGPT to improve the grammar, clarity, and coherence
of the paper [79].

References

[1] “About knox - samsung,” https://www.
samsungknox.com/es-419/about-knox, [Accessed
15-10-2024].

[2] “ALPACA Attack — alpaca-attack.com,” https://
alpaca-attack.com/, [Accessed 10-10-2024].

[3] “Android 15 Compatibility Definition — Android
Open Source Project — source.android.com,”

https://source.android.com/docs/compatibility/15/
android-15-cdd#322 build parameters, [Accessed
20-10-2024].

[4] “Behavior changes: all apps — Android
Developers — developer.android.com,”
https://developer.android.com/about/versions/
10/behavior-changes-all#tls-1.3, [Accessed 01-10-
2024].

[5] “Broken or risky cryptographic algorithm
— Security — Android Developers —
developer.android.com,” https://developer.
android.com/privacy-and-security/risks/
broken-cryptographic-algorithm, [Accessed
20-10-2024].

[6] “Cryptography — Security —Android
Developers — developer.android.com,”
https://developer.android.com/privacy-and-security/
cryptography#bc-algorithms, [Accessed 25-10-
2024].

[7] “EU Cyber Resilience Act — digital-
strategy.ec.europa.eu,” https://digital-strategy.
ec.europa.eu/en/policies/cyber-resilience-act,
[Accessed 21-02-2024].

[8] “ietf.org - rfc 2818,” https://www.ietf.org/rfc/
rfc2818.txt, [Accessed 01-10-2024].

[9] “Mobile Vendor Market Share Worldwide —
Statcounter Global Stats — gs.statcounter.com,”
https://gs.statcounter.com/vendor-market-share/
mobile/worldwide, [Accessed 21-10-2024].

[10] “Network security configuration — Security —
Android Developers — developer.android.com,”
https://developer.android.com/privacy-and-security/
security-config, [Accessed 25-10-2024].

[11] “NVD - CVE-2016-6709 — nvd.nist.gov,”
https://nvd.nist.gov/vuln/detail/CVE-2016-6709,
[Accessed 22-10-2024].

[12] “NVD - CVE-2021-0341 — nvd.nist.gov,”
https://nvd.nist.gov/vuln/detail/CVE-2021-0341,
[Accessed 21-10-2024].

[13] “OpenSSL Documentation — docs.openssl.org,”
https://docs.openssl.org/master/, [Accessed 24-10-
2024].

[14] “platform/libcore - Git at Google —
android.googlesource.com,” https://android.
googlesource.com/platform/libcore/, [Accessed
18-12-2023].

[15] “Remediation for Bad OpenSSL Versions -
Google Help — support.google.com,” https://
support.google.com/faqs/answer/12576638?hl=en,
[Accessed 25-10-2024].

[16] “Root of Trust — Fundamentals — Samsung Knox
Documentation — docs.samsungknox.com,” https:
//docs.samsungknox.com/admin/fundamentals/
whitepaper/samsung-knox-for-android/
core-platform-security/root-of-trust/, [Accessed
19-10-2024].

[17] “Security Developer’s Guide — docs.oracle.com,”
https://docs.oracle.com/en/java/javase/11/security/
index.html, [Accessed 10-10-2024].

[18] “Speeding up and strengthening HTTPS
connections for Chrome on Android — secu-
rity.googleblog.com,” https://security.googleblog.
com/2014/04/speeding-up-and-strengthening-https.

html, [Accessed 19-10-2024].
[19] “Here comes treble: A modular base for android,”

https://android-developers.googleblog.com/2017/
05/here-comes-treble-modular-base-for.html, 2017,
[Accessed 18-02-2024].

[20] “Android Dumps · GitLab —
dumps.tadiphone.dev,” https://dumps.tadiphone.
dev/dumps, 2023, [Accessed 19-12-2023].

[21] “Firmware Scanner - Aplicaciones en
Google Play — play.google.com,” https:
//play.google.com/store/apps/details?id=org.imdea.
networks.iag.preinstalleduploader&hl=es&gl=US,
2023, [Accessed 19-12-2023].

[22] “Android compatibility definition document,” https:
//source.android.com/docs/compatibility/cdd, 2024,
[Accessed 18-02-2024].

[23] “Boringssl - git at google,” https://boringssl.
googlesource.com/boringssl/, 2024, [Accessed 24-
01-2024].

[24] “Codenames, tags, and build numbers — Android
Open Source Project — source.android.com,”
https://source.android.com/docs/setup/about/
build-numbers, 2024, [Accessed 26-10-2023].

[25] “GitHub - JesusFreke/smali: smali/baksmali —
github.com,” https://github.com/JesusFreke/smali,
2024, [Accessed 22-03-2024].

[26] “GitHub - testwhat/SmaliEx: A wrapper to get de-
optimized dex from odex/oat/vdex. — github.com,”
https://github.com/testwhat/SmaliEx, 2024, [Ac-
cessed 22-03-2024].

[27] “Hex Rays - State-of-the-art binary code analysis
solutions — hex-rays.com,” https://hex-rays.com/
ida-pro/, 2024, [Accessed 22-03-2024].

[28] “Libgcrypt,” https://gnupg.org/software/libgcrypt/
index.html, 2024, [Accessed 24-01-2024].

[29] “NVD - cve-2014-0160,” https://nvd.nist.gov/vuln/
detail/cve-2014-0160, 2024, [Accessed 24-01-
2024].

[30] “platform/external/conscrypt - Git at Google,”
https://android.googlesource.com/platform/
external/conscrypt/, 2024, [Accessed 27-01-2024].

[31] “platform/external/okhttp - Git at Google,”
https://android.googlesource.com/platform/
external/okhttp/, 2024, [Accessed 27-01-2024].

[32] “Retrofit,” https://square.github.io/retrofit/, 2024,
[Accessed 27-01-2024].

[33] “Volley,” https://google.github.io/volley/, 2024,
[Accessed 27-01-2024].

[34] Y. Aafer, X. Zhang, and W. Du, “Harvesting in-
consistent security configurations in custom android
{ROMs} via differential analysis,” in 25th USENIX
Security Symposium (USENIX Security 16), 2016,
pp. 1153–1168.

[35] S. Almanee, A. Ünal, M. Payer, and J. Garcia, “Too
quiet in the library: An empirical study of secu-
rity updates in android apps’ native code. in 2021
ieee/acm 43rd international conference on software
engineering (icse),” Los Alamitos, CA, USA, pp.
1347–1359, 2021.

[36] Android, “Android Open Source Project -
Conscrypt,” https://source.android.com/docs/
core/ota/modular-system/conscrypt, accessed:
2024-06-25.

[37] Android, “Documentation for Importing
OpenJDK Files into libcore,” https:
//android.googlesource.com/platform/libcore/+/
HEAD/tools/expected upstream/README.md,
2024, accessed: 2024-03-28.

[38] Android Developers, “Android api reference,” https:
//developer.android.com/reference, 2024, accessed:
2024-03-28.

[39] Android Open Source Project, “Co-
denames, tags, and build numbers,”
https://source.android.com/docs/setup/reference/
build-numbers#source-code-tags-and-builds,
accessed: 2024-03-28.

[40] ARM developer, “ARM Application Binary
Interface,” https://developer.arm.com/Architectures/
ApplicationBinaryInterface, 2024.

[41] BetaWiki, “Android 11 build rkq1.200512.002,”
https://betawiki.net/wiki/Android 11 build RKQ1.
200512.002, 2024, accessed: 2024-03-28.

[42] E. Blázquez, S. Pastrana, Á. Feal, J. Gamba,
P. Kotzias, N. Vallina-Rodriguez, and J. Tapiador,
“Trouble over-the-air: An analysis of fota apps in
the android ecosystem,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp.
1606–1622.

[43] Bouncy Castle, “Bouncy castle fips faq,” http://git.
bouncycastle.org/fips faq.html, accessed: 2024-06-
25.

[44] M. Caswell and O. Project, “Fix ocsp status
request extension unbounded memory growth,”
https://github.com/openssl/openssl/commit/
2c0d295e26306e15a92eb23a84a1802005c1c137,
2016, accessed: 2024-03-28.

[45] CVE Details, “Vulnerabilities in gnupg
libgcrypt,” https://www.cvedetails.com/
vulnerability-list/vendor id-4711/product
id-25777/Gnupg-Libgcrypt.html, 2024, accessed:
2024-03-28.

[46] Cybersecurity and Infrastructure Secu-
rity Agency (CISA), “Ssl 3.0 protocol
vulnerability and poodle attack,” https:
//www.cisa.gov/news-events/alerts/2014/10/17/
ssl-30-protocol-vulnerability-and-poodle-attack,
2014, accessed: 2024-03-28.

[47] T. Dai, H. Shulman, and M. Waidner, “Let’s
downgrade let’s encrypt,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’21. New
York, NY, USA: Association for Computing Ma-
chinery, 2021, p. 1421–1440. [Online]. Available:
https://doi.org/10.1145/3460120.3484815

[48] A. developer, “GNU toolchain,” https://developer.
arm.com/Architectures/ABI, 2024.

[49] Z. Dong, Y. Zhao, T. Liu, C. Wang, G. Xu, G. Xu,
and H. Wang, “Same app, different behaviors: Un-
covering device-specific behaviors in android apps,”
arXiv preprint arXiv:2406.09807, 2024.

[50] Z. El-Rewini and Y. Aafer, “Dissecting residual apis
in custom android roms,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 1598–1611.

[51] M. Elsabagh, R. Johnson, A. Stavrou, C. Zuo,
Q. Zhao, and Z. Lin, “{FIRMSCOPE}: Automatic

uncovering of {Privilege-Escalation} vulnerabilities
in {Pre-Installed} apps in android firmware,” in
29th USENIX security symposium (USENIX Secu-
rity 20), 2020, pp. 2379–2396.

[52] facebookincubator, “Fizz: C++14 implementa-
tion of the tls-1.3 standard,” https://github.com/
facebookincubator/fizz, 2024, accessed: 2024-03-
28.

[53] S. Fahl, M. Harbach, H. Perl, M. Koetter,
and M. Smith, “Rethinking ssl development
in an appified world,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13. New
York, NY, USA: Association for Computing
Machinery, 2013, p. 49–60. [Online]. Available:
https://doi.org/10.1145/2508859.2516655

[54] Á. Feal, P. Calciati, N. Vallina-Rodriguez, C. Tron-
coso, and A. Gorla, “Angel or devil? a privacy study
of mobile parental control apps,” Proceedings on
Privacy Enhancing Technologies, 2020.

[55] O. Foundation, “Openssl,” https://www.openssl.
org/, 2024, [Accessed 24-01-2024].

[56] J. Friess, H. Schulmann, and M. Waidner,
“Revocation speedrun: How the webpki copes with
fraudulent certificates,” Proc. ACM Netw., vol. 1,
no. CoNEXT3, Nov. 2023. [Online]. Available:
https://doi.org/10.1145/3629148

[57] J. Gajrani, U. Agarwal, V. Laxmi, B. Bezawada,
M. S. Gaur, M. Tripathi, and A. Zemmari, “Espy-
droid+: Precise reflection analysis of android apps,”
Computers Security, vol. 90, p. 101688, 2020.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404819302251

[58] J. Gamba, Á. Feal, E. Blazquez, V. Bandara,
A. Razaghpanah, J. Tapiador, and N. Vallina-
Rodriguez, “Mules and permission laundering in
android: Dissecting custom permissions in the
wild,” IEEE Transactions on Dependable and Se-
cure Computing, pp. 1–18, 2023.

[59] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador,
and N. Vallina-Rodriguez, “An analysis of pre-
installed android software,” in 2020 IEEE sympo-
sium on security and privacy (SP). IEEE, 2020,
pp. 1039–1055.

[60] Google, “Supported devices - Google Play Help
- Google Support — storage.googleapis.com,”
https://storage.googleapis.com/play public/
supported devices.html, [Accessed 18-02-2025].

[61] Google, “Google android enterprise security
whitepaper 2018,” https://source.android.com/
static/docs/security/overview/reports/Google
Android Enterprise Security Whitepaper 2018.
pdf, 2018, accessed: 2024-03-28.

[62] Q. Hou, W. Diao, Y. Wang, C. Mao, L. Ying, S. Liu,
X. Liu, Y. Li, S. Guo, M. Nie, and H. Duan, “Can
we trust the phone vendors? comprehensive secu-
rity measurements on the android firmware ecosys-
tem,” IEEE Transactions on Software Engineering,
vol. 49, no. 07, pp. 3901–3921, jul 2023.

[63] G. B. Hunters, “Google bug hunters report,” https:
//bughunters.google.com/report, accessed: 2024-07-
05.

[64] K. Hynek, D. Vekshin, J. Luxemburk, T. Cejka, and

A. Wasicek, “Summary of dns over https abuse,”
IEEE Access, vol. 10, pp. 54 668–54 680, 2022.

[65] Y. J. Jia, Q. A. Chen, Y. Lin, C. Kong, and Z. M.
Mao, “Open doors for bob and mallory: Open port
usage in android apps and security implications,” in
2017 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 2017, pp. 190–203.

[66] K. R. Jones, T.-F. Yen, S. C. Sundaramurthy, and
A. G. Bardas, “Deploying android security updates:
an extensive study involving manufacturers, carri-
ers, and end users,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Com-
munications Security, 2020, pp. 551–567.

[67] J. Koret, “Diaphora,”
https://github.com/joxeankoret/diaphora.

[68] P. Kotzias, A. Razaghpanah, J. Amann, K. G.
Paterson, N. Vallina-Rodriguez, and J. Caballero,
“Coming of age: A longitudinal study of tls
deployment,” in Proceedings of the Internet
Measurement Conference 2018, ser. IMC ’18.
New York, NY, USA: Association for Computing
Machinery, 2018, p. 415–428. [Online]. Available:
https://doi.org/10.1145/3278532.3278568

[69] J. Larisch, W. Aqeel, T. Chung, E. Kohler, D. Levin,
B. M. Maggs, B. Parno, and C. Wilson, “No root
store left behind,” in Proceedings of the 22nd ACM
Workshop on Hot Topics in Networks, 2023, pp.
295–301.

[70] J. Lee and D. S. Wallach, “Removing secrets from
android’s tls,” in NDSS, 2018.

[71] D. J. Leith, “Mobile handset privacy: Measuring the
data ios and android send to apple and google,” in
Security and Privacy in Communication Networks:
17th EAI International Conference, SecureComm
2021, Virtual Event, September 6–9, 2021, Proceed-
ings, Part II 17. Springer, 2021, pp. 231–251.

[72] Y. Lindell, “RFC 8452: AES-GCM-SIV: Nonce
Misuse-Resistant Authenticated Encryption —
datatracker.ietf.org,” https://datatracker.ietf.org/doc/
html/rfc8452, [Accessed 19-10-2024].

[73] Z. Ma, J. Austgen, J. Mason, Z. Durumeric, and
M. Bailey, “Tracing your roots: exploring the tls
trust anchor ecosystem,” in Proceedings of the 21st
ACM Internet Measurement Conference, 2021, pp.
179–194.

[74] A. N. Malpani, “RFC 2560: X.509 Internet Pub-
lic Key Infrastructure Online Certificate Status
Protocol - OCSP — datatracker.ietf.org,” https:
//datatracker.ietf.org/doc/html/rfc2560, 1999, [Ac-
cessed 30-04-2024].

[75] R. Mayrhofer, J. V. Stoep, C. Brubaker, and
N. Kralevich, “The android platform security
model,” ACM Transactions on Privacy and Security
(TOPS), vol. 24, no. 3, pp. 1–35, 2021.

[76] R. Mayrhofer, J. Vander Stoep, C. Brubaker,
D. Hackborn, B. Bonne, G. S. Tuncay, R. Pi-
queras Jover, and M. A. Specter, “The android
platform security model (2023),” arXiv preprint
arXiv:1904.05572, 2024.

[77] h. . https://developer.android.com/about/versions/
12/behavior-changes-all#bouncy-castle. n. . A.
ndroid, year = 2024, “Behavior changes: all apps
- Android 12.”

[78] M. Oltrogge, N. Huaman, S. Amft, Y. Acar,
M. Backes, and S. Fahl, “Why eve and mallory
still love android: Revisiting {TLS}({In) Security}
in android applications,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 4347–
4364.

[79] OpenAI, “Chatgpt, march 2024 version,” https://
chat.openai.com, 2024, accessed: April 1, 2025.

[80] OpenSSL Foundation, “/docs/-
man3.0/man7/crypto.html — openssl.org,” https:
//www.openssl.org/docs/man3.0/man7/crypto.html,
2024, [Accessed 22-03-2024].

[81] Oracle Co-operation, “Openjdk,” https://openjdk.
org/, 2024, [Accessed 23-01-2024].

[82] OWASP Foundation, “Insecure randomness,”
https://owasp.org/www-community/vulnerabilities/
Insecure Randomness, accessed: 2024-03-28.

[83] S. Pletinckx, T. Nguyen, T. Fiebig, C. Kruegel,
and G. Vigna, “Certifiably vulnerable: Using cer-
tificate transparency logs for target reconnaissance,”
in 2023 IEEE 8th European Symposium on Security
and Privacy (EuroS&P). IEEE Computer Society,
jul 2023.

[84] A. Possemato, S. Aonzo, D. Balzarotti, and
Y. Fratantonio, “Trust, but verify: A longitudinal
analysis of android oem compliance and customiza-
tion,” in 2021 IEEE Symposium on Security and
Privacy (SP). IEEE, 2021, pp. 87–102.

[85] A. O. S. Project, “Compatibility test suite (cts),”
https://source.android.com/docs/compatibility/cts,
2024, accessed: 2024-03-28.

[86] A. Razaghpanah, A. A. Niaki, N. Vallina-
Rodriguez, S. Sundaresan, J. Amann, and P. Gill,
“Studying tls usage in android apps,” in Pro-
ceedings of the 13th International Conference on
emerging Networking EXperiments and Technolo-
gies, 2017, pp. 350–362.

[87] A. Razaghpanah, R. Nithyanand, N. Vallina-
Rodriguez, S. Sundaresan, M. Allman, C. Kreibich,
P. Gill et al., “Apps, trackers, privacy, and regula-
tors: A global study of the mobile tracking ecosys-
tem,” in The 25th annual network and distributed
system security symposium (NDSS 2018), 2018.

[88] E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood,
“TLS Encrypted Client Hello,” Internet Engineering
Task Force, Internet-Draft draft-ietf-tls-esni-23,
Feb. 2025, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/23/

[89] I. Square, “Okhttp: Square’s meticulous http client
for the jvm, android, and graalvm,” https://github.
com/square/okhttp, accessed: 2024-06-25.

[90] Statcounter, “Android version market share
worldwide,” https://gs.statcounter.com/
android-version-market-share, accessed: 2024-
06-25.

[91] T. Sutter and B. Tellenbach, “Firmwaredroid: To-
wards automated static analysis of pre-installed an-
droid apps,” in 2023 IEEE/ACM 10th International
Conference on Mobile Software Engineering and
Systems (MOBILESoft), 2023, pp. 12–22.

[92] The Chromium Projects, “Chrome root program
policy, version 1.5,” https://www.chromium.org/
Home/chromium-security/root-ca-policy/, 2024,

last updated: 2024-01-16, Accessed: 2024-03-28.
[93] The Washinton Post, “Web browsers drop mysteri-

ous company with ties to u.s. military contractor,”
https://www.washingtonpost.com/technology/2022/
11/30/trustcor-internet-authority-mozilla/, 2022,
accessed: 2024-04-20.

[94] N. Vallina-Rodriguez, J. Amann, C. Kreibich,
N. Weaver, and V. Paxson, “A tangled mass: The
android root certificate stores,” in Proceedings of
the 10th ACM International on Conference on
emerging Networking Experiments and Technolo-
gies, 2014, pp. 141–148.

[95] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android
fragmentation: Characterizing and detecting com-
patibility issues for android apps,” in Proceedings
of the 31st IEEE/ACM International Conference on
Automated Software Engineering, 2016, pp. 226–
237.

[96] Wired, “Independent iranian hacker claims respon-
sibility for comodo hack,” https://www.wired.com/
2011/03/comodo-hack/, 2011, last updated: 2011-
03-28, Accessed: 2024-03-29.

[97] H. Xiaomi, “Hackerone report to xiaomi,” https://
hackerone.com/xiaomi, accessed: 2024-10-17.

[98] K. S. YIM, I. Malchev, A. Hsieh, and D. Burke,
“Treble: Fast software updates by creating an equi-
librium in an active software ecosystem of glob-
ally distributed stakeholders,” ACM Trans. Embed.
Comput. Syst., vol. 18, pp. 104:1–104:23, 2019.

[99] Zebra Technologies, “Android mobile dod
stig validation,” https://www.zebra.com/
content/dam/zebra dam/en/brief/application/
government-brief-application-android-mobile-dod-stig-validation-en-us.
pdf, 2024, accessed: 2024-03-28.

[100] M. Zheng, M. Sun, and J. C. Lui, “Droidray: a
security evaluation system for customized android
firmwares,” in Proceedings of the 9th ACM sym-
posium on Information, computer and communica-
tions security, 2014, pp. 471–482.

[101] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and
X. Wang, “The peril of fragmentation: Security
hazards in android device driver customizations,”
in 2014 IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 409–423.

Appendix A.
Data Availability (Open Science)

Code availability: The code and associated scripts used
in this research are publicly available on GitHub and can
be accessed at: https://github.com/OEM-customization/.
This repository includes the full automation script to
clone and build Android images, as well as the diffing
pipeline for comparing OEM firmware images against
AOSP baselines. Additionally, we release the complete list
of customizations observed for independent verification,
including detailed information such as vendor, model,
fingerprint, baseline, component, class name, and cus-
tomization. These results are stored in the results/
folder within the repository for public access.

Data availability: The dataset used in this study con-
sists of sample Android dumps (images), and links
to these images are provided in the repository un-
der the firmware_images/sample_oem.txt file.
Users can clone more Android dumps from the Android
dumps website [20].

Reproducibility materials: We provide sample
AOSP images for major Android releases in the
AOSP_BUILDS/ folder within the repository. A detailed
automated diffing pipeline along with an AOSP image
building script is included, allowing users to replicate
our results by comparing OEM firmware images to these
AOSP baselines.

System requirements and environment setup: To suc-
cessfully clone, build, and run the pipeline, ensure your
machine meets the following requirements:

• Disk Space: At least 400 GB of free disk space (250
GB for checking out images + 150 GB for building
them).

• Software Packages: The required packages from the
Android Open Source Project must be installed, as
well as these additional Python libraries: pandas,
numpy, ssdeep, colorama, pyOpenSSL.

Running the pipeline: After setting up your environment
and ensuring you have sufficient disk space:

1) Download OEM Firmware Images: Navigate to
the firmware_images/ directory and clone the
repositories listed in sample_oem.txt.

2) Prepare AOSP Images: We provide 5 baseline AOSP
images in the AOSP_BUILDS/ folder. If your target
image differs, the pipeline will automatically build
the necessary AOSP version.

3) Execute the Pipeline: Run the main.py script, fol-
low the on-screen prompts, and proceed with the
diffing process. Review Results: All outputs are saved
in the diffing_results/ folder. To determine
the role of missing functions (AOSP-only functions),
refer to the Android documentation on the APIs [38].
For detecting the role of OEM-specific methods/-
logic, manually review and establish the usage of the
methods. Refer to Appendix B.3 to understand how
compiler-introduced methods are filtered.

Appendix B.
Supplementary Material

This section provides complementary material about
component extraction and manual verification processes,
with various examples.

B.1. TLS Stack Component Identification

In § 4, we discuss the methodology to extract TLS
components. Table 8 lists the various paths considered.

B.2. Baseline Identification

As explained in § 4.2, we detected cases where the
BUILD_ID did not directly correspond to a known AOSP
release or could not be found online. Table 9 exemplifies
several identified inconsistencies for reference.

B.3. Diffing result contextualization guidelines.

When conducting automated and manual analysis of
function and logic-level diffing for both Java and C++
libraries, we follow these structured guidelines:

1) For Java libraries:
• Identifying missing AOSP functions: When OEMs

exclude functions available in AOSP, we cross-
reference the missing function with the official
Android sources for JSSE [14], Conscrypt [30]
and OkHttp [31]. Additionally, Android API docu-
mentation [38] is used to understand the expected
behavior and purpose of these functions.

• Analyzing logic diffs: For logic diffs, we closely
inspect the custom logic introduced by the OEMs,
identifying any extra checks, or branches that differ
from the standard AOSP implementation. We doc-
ument how these changes may affect app behavior
or security. We note that this requires the ability
to understand the Smali-level representation of the
code.

• Understanding OEM-implemented functions: For
custom Java functions introduced by OEMs, we
analyze the Smali representations of the corre-
sponding class and function code. We study the
intended utility of these new functions and trace
how they are invoked by other components within
the framework to determine their role and potential
impact.

2) For Native libraries (C++)
• BoringSSL function analysis: Due to the inabil-

ity to extract source code from shared objects,
we depend on the documented behaviors of Bor-
ingSSL [23] and OpenSSL [13] to study the impact
of OEM customizations. We begin by examining
the symbol tree. This allows us to detect added or
missing functions.

• Understanding missing cryptographic functions:
When the pipeline detects a missing function, we
study its usage in the AOSP to understand the
function’s role and assess the impact of its absence
in the OEM customization. For added functions,

TABLE 8: Default and probable locations for the networking libraries, packages, and core components.

File Type Default Path Description

boot.oat /system/framework/arm(64)/boot.oat
Includes the core-oj components including
javax.net, javax.crypto, etc. which
are forked by OpenJDK

core-oj.jar /system/framework/core-oj.jar
*/apex/com.android.art.debug/javalib/core-oj.jar

Includes the core-oj components including
javax.net, javax.crypto, etc. which
are forked by OpenJDK

Native libraries */lib
*/lib64

Includes the compiled libraries built during runtime
including the JCA providers

Conscrypt
/framework/arm(64)/boot-conscrypt.oat
/framework/conscrypt.odex(.jar)
*/apex/com.android.conscrypt/javalib/conscrypt.jar

Includes the source code for conscrypt, could be either
in .oat, .jar or .odex formats

Okhttp
/framework/arm(64)/boot-okhttp.oat
/framework/okhttp.odex(.jar)
*/apex/com.android.art.debug/javalib/okhttp.jar

Includes the source code for okhttp, could be either
in .oat, .jar or .odex formats

Bouncy Castle
/framework/arm(64)/boot-bouncycastle.oat
/framework/bouncycastle.odex(.jar)
*/apex/com.android.art.debug/javalib/bouncycastle.jar

Includes the source code for bouncy castle, could be
either in .oat, .jar or .odex formats

System CA certificates /etc/security/cacerts Includes the root store certificates of each device

TABLE 9: Examples of inconsistencies between build.prop and build metadata for selected devices.

OEM Model Build ID Version reported
by OEM (API level)

API level defined
in build.prop

Last build date
defined in build.prop Defined Baseline

Mito v152 jxd 2h2 LMY47D 9 (28) 22 03/29/2016 android-9.0.0 r1
Asus X00TD qkq1 9 (28) 31 01/19/2022 android-9.0.0 r1
Motorola kiev retail rzks31.q3-45-16-8-3 11 (30) 32 07/11/2022 android-11.0.0 r1
Samsung graceltexx mmb29k 9 (28) 24 09/10/2020 android-9.0.0 r1
Alps f202 f22 p10 mra58k 10 (29) 23 08/24/2020 android-10.0.0 r1
Samsung j6primelte QP1A.190711.020 10 (29) 29 07/02/2020 android-10.0.0 r2
Redmi matisse sp1a.210812.016 12 (31) 31 11/04/2022 android-12.0.0 r3

we check if the added functions match with any
OpenSSL functions that don’t exist in BoringSSL.

Figure 7 exemplifies how we differentiate between ob-
fuscation and legitimate functional changes, as explained
in § 4.3.

.class public final synthetic Lsun/nio/ch/-$$Lambda$ThreadPool$N88rfRTSpCtnK5fgJO
-WA6OwVQM;

.source "lambda"

interfaces
.implements Ljava/util/concurrent/ThreadFactory;

static fields
.field public static final synthetic INSTANCE:Lsun/nio/ch/-

$$Lambda$ThreadPool$N88rfRTSpCtnK5fgJO-WA6OwVQM;

direct methods
.method static synthetic constructor <clinit>()V

.registers 1

new-instance v0, Lsun/nio/ch/-$$Lambda$ThreadPool$N88rfRTSpCtnK5fgJO-WA6OwVQM
;

invoke-direct {v0}, Lsun/nio/ch/-$$Lambda$ThreadPool$N88rfRTSpCtnK5fgJO-
WA6OwVQM;-><init>()V

sput-object v0, Lsun/nio/ch/-$$Lambda$ThreadPool$N88rfRTSpCtnK5fgJO-WA6OwVQM
;->INSTANCE:Lsun/nio/ch/-$$Lambda$ThreadPool$N88rfRTSpCtnK5fgJO-
WA6OwVQM;

#disallowed odex opcode
#return-void-no-barrier
nop

.end method

.method private synthetic constructor <init>()V
.registers 1
invoke-direct {p0}, Ljava/lang/Object;-><init>()V
return-void

.end method

Figure 7: Example of synthetic and obfuscation classes
introduced by compilation artifacts. We filter out functions
with the synthetic modifier.

Appendix C.
Supplementary code snippets

// Class: java.net.NetworkInterface
public byte[] getHardwareAddress() throws SocketException {

NetworkInterface ni = getByName(this.name);
if (ni == null) throw new SocketException("Interface missing");
if (ni.hardwareAddr == null && !"lo".equals(this.name)

&& !Compatibility.isChangeEnabled(RETURN_NULL_HARDWARE_ADDRESS)) {
return DEFAULT_MAC_ADDRESS.clone();

}
return shouldProtectMac(this.name) ? DEFAULT_MAC_ADDRESS.clone() : ni.

hardwareAddr;
}

private boolean shouldProtectMac(String iface) {
if (!"wlan0".equals(iface)) return false;
try {

synchronized (NetworkInterface.class) {
if (checkMacPermissionMethod == null) {

Class<?> cls = Class.forName("com.vivo.services.security.
client.VivoPermissionManager");

checkMacPermissionMethod = cls.getMethod("
checkCallerMacPermission", String.class);

}
}
return !((Boolean) checkMacPermissionMethod.invoke(null, iface));

} catch (Exception e) { return false; }
}
// Class: com.vivo.framework.security.VivoPermissionManager
public boolean checkCallerMacPermission(String iface) {

return isOverSeas() || isSystemAppCalling(this.mContext)
|| SystemProperties.getBoolean("persist.vivo.wifimacrandom", true);

}
// Class: com.bbk.account.base.utils.AccountSystemProperties
private AccountSystemProperties() {

this.mCountryCode = getSystemProperties("ro.product.country.region", "N");
if ("N".equals(this.mCountryCode))

this.mCountryCode = getSystemProperties("ro.product.customize.bbk", "N
");

this.mIsOverseas = "CN".equals(getSystemProperties(SYSTEM_KEY_OVERSEAS, "
no"));

if (!this.mIsOverseas) this.mCountryCode = "CN";
}
public String getCountryCode() { return this.mCountryCode; }
public boolean isOverseas() { return this.mIsOverseas; }

Figure 8: Java representation of Vivo MAC address protec-
tion with region-specific, permission-specific conditions.

Figures 13, 14, 15, 16, 17 an18 show code-snippets of
Android apps making use of missing or customized TLS
functions by OEMs.

package com.android.server.pm;

public class CompatibilityHelper extends com.oppo.RomUpdateHelper {

public void customizeNativeLibrariesIfNeeded(PackageParser.Package pkg) {
File[] listFiles;
ArrayList tmpList = new ArrayList();
boolean bOpenssl = false;
if (isInWhiteList(23, pkg.packageName)) {

tmpList.add("openssl");
}
File dir = new File(pkg.applicationInfo.nativeLibraryDir);
if (dir.isDirectory()) {

for (File tmp : dir.listFiles()) {
String libName = tmp.getName();
if (libName != null) {

if (!bOpenssl && isInWhiteList(24, libName)) {
if (!tmpList.contains("openssl")) {

tmpList.add("openssl");
}

} else if ("libssl.so".equals(libName) || "libcrypto.so".
equals(libName)) {

bOpenssl = true;
}
if ("libdexinterpret.so".equals(libName) && isInWhiteList(28,

pkg.packageName)) {
tmpList.add("atlas");

}
}

}
if (bOpenssl || isInWhiteList(FORCE_DISABLE_OPENSSL, pkg.packageName)

) {
tmpList.remove("openssl");

}
}
if (tmpList.size() > 0) {

pkg.applicationInfo.specialNativeLibraryDirs = (String[]) tmpList.
toArray(new String[tmpList.size()]);

}
if (isInWhiteList(FORCE_NEED_SPECIAL_LIBRARIES_IN, pkg.packageName)) {

boolean is64Bit = VMRuntime.is64BitInstructionSet(InstructionSets.
getPrimaryInstructionSet(pkg.applicationInfo));

String opensslLibraryDir = is64Bit ? "/vendor/lib64/openssl" : "/
vendor/lib/openssl";

pkg.applicationInfo.nativeLibraryDir = opensslLibraryDir + File.
pathSeparator + pkg.applicationInfo.nativeLibraryDir;

}
}

Figure 9: Oppo usage of OpenSSL for compatibility.
The CompatibilityHelper class uses outdated OpenSSL
versions from the years 2013 and 2014 with known vul-
nerabilities.

-=

Scanned Source License libgcrypt-1.8.3/LICENSES:

Additional license notices for Libgcrypt. -*- org -*-

This file contains the copying permission notices for various files in the
Libgcrypt distribution which are not covered by the GNU Lesser General
Public License (LGPL) or the GNU General Public License (GPL).

These notices all require that a copy of the notice be included in the
accompanying documentation and be distributed with binary distributions of
the code, so be sure to include this file along with any binary
distributions derived from the GNU C Library.

* BSD_3Clause
For files:
- cipher/sha256-avx-amd64.S
- cipher/sha256-avx2-bmi2-amd64.S
- cipher/sha256-ssse3-amd64.S
- cipher/sha512-avx-amd64.S
- cipher/sha512-avx2-bmi2-amd64.S
- cipher/sha512-ssse3-amd64.S

#+begin_quote
Copyright (c) 2012, Intel Corporation All rights reserved.

Redistribution and use in source and binary forms, with or without modification
, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

#+end_quote

For files:
- random/jitterentropy-base.c
- random/jitterentropy.h
- random/rndjent.c (plus common Libgcrypt copyright holders)

#+begin_quote

* Copyright Stephan Mueller <smueller@chronox.de>, 2013

Figure 10: Libgcrypt usage in Google Home implemen-
tations by LGE and HTC, incorporated for its SHA-256
and SHA-512 functionalities.

// OpenSSL engine usage for Samsung smart cards

package com.sec.enterprise.jce.provider.pkcs11;
import java.lang.reflect.Constructor;
import java.lang.reflect.Method;
import java.security.InvalidKeyException;
import java.security.PrivateKey;
public final class OpenSSLEnginePrivateKeyHelper {

private static final int SECPKCS11_ENGINE_CAC_CUSTOM_CTX = 2;
private static final int SECPKCS11_ENGINE_CCM_CUSTOM_CTX = 1;
private static final String TAG = "OpenSSLEnginePrivateKeyHelper";
private static native long ENGINE_load_private_key(int i, String str);

static {
System.loadLibrary("secpkcs11_engine.secsmartcard.samsung");

}

private OpenSSLEnginePrivateKeyHelper() {
}
public static PrivateKey ccmGetPrivateKeyById(String id) throws

InvalidKeyException {
return getPrivateKeyById(1, id);

}
public static PrivateKey cacGetPrivateKeyById(String id) throws

InvalidKeyException {
return getPrivateKeyById(2, id);

}
private static PrivateKey getPrivateKeyById(int handle, String id) throws

InvalidKeyException {
if (id == null) {

throw new NullPointerException("id == null");
}
long keyRef = ENGINE_load_private_key(handle, id);
if (keyRef == 0) {

return null;
}
try {

Class c = Class.forName("com.android.org.conscrypt.OpenSSLKey");
Constructor a = c.getDeclaredConstructor(Long.TYPE, Boolean.TYPE,

Boolean.TYPE);
a.setAccessible(true);
Object instance = a.newInstance(Long.valueOf(keyRef), false, true);
Method getPrivateKey = c.getDeclaredMethod("getPrivateKey", null);
getPrivateKey.setAccessible(true);
PrivateKey pkey = (PrivateKey) getPrivateKey.invoke(instance, null);
return pkey;

} catch (Exception e) {
return null;

}
}

}

// Smart card helper class in Samsung devices
package com.sec.smartcard.client;
import com.sec.smartcard.pkcs11.Pkcs11;

public class SmartCardHelper {
public static final String OWN_CRYPTOKI_LIBRARYNAME = "

libSamsungPkcs11Wrapper.secsmartcard.samsung.so";
static { System.loadLibrary("secpkcs11_engine.secsmartcard.samsung"); }

private ICryptoServiceListener mCryptoServiceListener = new
ICryptoServiceListener.Stub() {

@Override
public void onSmartCardConnected(String identifier) {

Log.i("SmartcardHelper", "onSmartCardConnected");
synchronized (this) {

Log.i("SmartcardHelper", "Executing synchronized block");
if (SmartCardHelper.this.mPkcs11Loader == null) {

Log.i("SmartcardHelper", "Pkcs11 is null. So creating and
loading Pkcs11");

SmartCardHelper.this.mPkcs11Loader = new Pkcs11();
if (SmartCardHelper.this.mPkcs11Loader != null) {

Log.i("SmartcardHelper", "Load Pkcs11");
if (SmartCardHelper.this.mBoundSmartCardService != null)

{
try {

String socket = SmartCardHelper.this.
mBoundSmartCardService.
getCryptoServiceSocket();

SmartCardHelper.this.mPkcs11Loader.Load(
SmartCardHelper.OWN_CRYPTOKI_LIBRARYNAME,
SmartCardHelper.

OWN_C_GETFUNCTIONLIST_METHOD,
socket, false);

} catch (RemoteException e) {
e.printStackTrace();

}
}}}}

SmartCardHelper.this.mCallback.onInitComplete();
}
@Override
public void onSmartCardConnectionError(String identifier, int reasonCode)

{
Log.i("SmartcardHelper", "onSmartCardConnectionError" + reasonCode);
try {

synchronized (this) {
if (SmartCardHelper.this.mPkcs11Loader != null) {

SmartCardHelper.this.mPkcs11Loader.Unload();
SmartCardHelper.this.mPkcs11Loader = null;

}
}

} catch (RemoteException e) {
e.printStackTrace();

}}

Figure 11: PKCS11 engine.so usage for Samsung smart
card services, is important for Samsung’s TrustZone im-
plementations for securing sensitive data.

\\ Advanced crypto (AC) symmetric key factory extending Java security
KeyFactorySpi

package com.xiaomi.finddevice.common.advancedcrypto;

import java.security.Key;
import java.security.KeyFactorySpi;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.spec.KeySpec;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;

public class ACAsymKeyFactory extends KeyFactorySpi {
static { System.loadLibrary("advanced_crypto_jni"); }
private static native String getPrivateKeyType(byte[] bArr);
private static native String getPublicKeyType(byte[] bArr);
@Override // java.security.KeyFactorySpi
protected final PrivateKey engineGeneratePrivate(KeySpec keySpec) throws

InvalidKeySpecException {
ACECCPrivateKey build;
if (keySpec instanceof PKCS8EncodedKeySpec) {

byte[] encoded = ((PKCS8EncodedKeySpec) keySpec).getEncoded();
if (encoded != null) {

if (getPrivateKeyType(encoded).equals("ACECCPrivate")) {
try {

build = ACECCPrivateKey.build(encoded);
} catch (ACBadKeyBytesException unused) {

throw new RuntimeException("Should never reach here. ");
}

} else {
build = null;

}
if (build != null) {

return build;
}
...

throw new InvalidKeySpecException("Support only PKCS8EncodedKeySpec");
}

@Override // java.security.KeyFactorySpi
protected final PublicKey engineGeneratePublic(KeySpec keySpec) throws

InvalidKeySpecException {
ACDSAPublicKey build;
if (keySpec instanceof X509EncodedKeySpec) {

byte[] encoded = ((X509EncodedKeySpec) keySpec).getEncoded();
if (encoded != null) {

if (getPublicKeyType(encoded).equals("ACDSAPublic")) {
try {

build = ACDSAPublicKey.build(encoded);
} catch (ACBadKeyBytesException unused) {

throw new RuntimeException("Should never reach here. ");
}

} else {
build = null;

}
if (build != null) {

return build;
}

...
throw new InvalidKeySpecException("Support only X509EncodedKeySpec");

}

\\ ACJCE implementation extending Java security provider
package com.xiaomi.finddevice.common.advancedcrypto;
import java.security.Provider;
public class ACJCEProvider extends Provider {

public ACJCEProvider() {
super("AC", 1.0d, "Native Advanced Crypto");
put("KeyFactory.ACAsym", ACAsymKeyFactory.class.getName());
put("KeyFactory.EC", ACECCKeyFactory.class.getName());
put("KeyFactory.DSA", ACDSAKeyFactory.class.getName());
put("Signature.sha256withECDSA", ACSha256withECDSASignature.class.getName

());
put("Signature.DSA", ACDSASignature.class.getName());

}
}

\\ ACJCE provider usage in Xiaomi’s find device app.
package com.xiaomi.finddevice;
import com.xiaomi.finddevice.common.advancedcrypto.ACJCEProvider;
import java.security.Security;
public class Application extends android.app.Application {

Security.insertProviderAt(new ACJCEProvider(), 1);
FindDeviceKeyguardManager.init(this);

}

Figure 12: The libadvanced crypto.so usage supporting
MIUI devices Find device app, building on the capabilities
provided by libcrypto.so.

public byte[] encrypt(com.microsoft.appcenter.utils.crypto.
CryptoUtils$ICryptoFactory p1, int p2, java.security.KeyStore$Entry p3,
byte[] p4) {

byte[] v1_1 = this.getCipher(p1, p2);
java.security.InvalidKeyException v2_3 = ((java.security.cert.X509Certificate

) ((java.security.KeyStore$PrivateKeyEntry) p3).getCertificate());
try {

v2_3.checkValidity();
} catch (byte[] v1_3) {

throw new java.security.InvalidKeyException(v1_3);
}
v2_3.getPublicKey();
v1_1.init(1, v2_3);
return v1_1.doFinal(p4);

}

Figure 13: encrypt() function using JSSE’s checkValidity
to check the certificate validity before allowing encryption
operations within the app.

public final com.squareup.okhttp.Response readNetworkResponse() {
this.transport.finishRequest();
com.squareup.okhttp.Response response = this.transport.readResponseHeaders()

.request(this.networkRequest)

.handshake(this.connection.getHandshake())

.header(com.squareup.okhttp.internal.http.OkHeaders.SENT_MILLIS, Long.
toString(this.sentRequestMillis))

.header(com.squareup.okhttp.internal.http.OkHeaders.RECEIVED_MILLIS, Long
.toString(System.currentTimeMillis()))

.build();

if (!this.forWebSocket) {
response = response.newBuilder().body(this.transport.openResponseBody(

response)).build();
}
return response;

}

Figure 14: OkHttp.handshake() function used to extract
handshake details, the readNetworkResponse() function
lacks proper exception handling in the scenario where the
handshake() function is missing.

.method public connect(IIIIZLcom/mbridge/msdk/thrid/okhttp/Call;Lcom/mbridge/msdk
/thrid/okhttp/EventListener;)V

.locals 16

.param p1, "connectTimeout" # I

.param p2, "readTimeout" # I

.param p3, "writeTimeout" # I

.param p4, "pingIntervalMillis" # I

.param p5, "connectionRetryEnabled" # Z

.param p6, "call" # Lcom/mbridge/msdk/thrid/okhttp/Call;

.param p7, "eventListener" # Lcom/mbridge/msdk/thrid/okhttp/EventListener;
iget-object v0, p0, Lcom/mbridge/msdk/thrid/okhttp/internal/connection/

RealConnection;->protocol:Lcom/mbridge/msdk/thrid/okhttp/Protocol;
if-nez v0, :cond_b
iget-object v1, p0, Lcom/mbridge/msdk/thrid/okhttp/internal/connection/

RealConnection;->route:Lcom/mbridge/msdk/thrid/okhttp/Route;
invoke-virtual {v1}, Lcom/mbridge/msdk/thrid/okhttp/Route;->address()Lcom/

mbridge/msdk/thrid/okhttp/Address;
move-result-object v1
invoke-virtual {v1}, Lcom/mbridge/msdk/thrid/okhttp/Address;->

sslSocketFactory()Ljavax/net/ssl/SSLSocketFactory;
move-result-object v1
if-nez v1, :cond_2
invoke-virtual {v1}, Lcom/mbridge/msdk/thrid/okhttp/Address;->url()Lcom/

mbridge/msdk/thrid/okhttp/HttpUrl;
move-result-object v1
invoke-virtual {v1}, Lcom/mbridge/msdk/thrid/okhttp/HttpUrl;->host()Ljava/

lang/String;
move-result-object v1
invoke-static {}, Lcom/mbridge/msdk/thrid/okhttp/internal/platform/Platform

;->get()Lcom/mbridge/msdk/thrid/okhttp/internal/platform/Platform;
move-result-object v2
invoke-virtual {v2, v1}, Lcom/mbridge/msdk/thrid/okhttp/internal/platform/

Platform;->isCleartextTrafficPermitted(Ljava/lang/String;)Z
move-result v2
if-eqz v2, :cond_0
goto :goto_0
:cond_0
new-instance v2, Lcom/mbridge/msdk/thrid/okhttp/internal/connection/

RouteException;
new-instance v3, Ljava/net/UnknownServiceException;
new-instance v4, Ljava/lang/StringBuilder;
invoke-direct {v4}, Ljava/lang/StringBuilder;-><init>()V
const-string v5, "CLEARTEXT communication to "
invoke-virtual {v4, v5}, Ljava/lang/StringBuilder;->append(Ljava/lang/String

;)Ljava/lang/StringBuilder;
invoke-virtual {v4, v1}, Ljava/lang/StringBuilder;->append(Ljava/lang/String

;)Ljava/lang/StringBuilder;
const-string v5, " not permitted by network security policy"
invoke-virtual {v4, v5}, Ljava/lang/StringBuilder;->append(Ljava/lang/String

;)Ljava/lang/StringBuilder;
invoke-virtual {v4}, Ljava/lang/StringBuilder;->toString()Ljava/lang/String;
move-result-object v4
invoke-direct {v3, v4}, Ljava/net/UnknownServiceException;-><init>(Ljava/lang

/String;)V
invoke-direct {v2, v3}, Lcom/mbridge/msdk/thrid/okhttp/internal/connection/

RouteException;-><init>(Ljava/io/IOException;)V
throw v2
:cond_2
move-object v12, v0
iget-object v0, p0, Lcom/mbridge/msdk/thrid/okhttp/internal/connection/

RealConnection;->route:Lcom/mbridge/msdk/thrid/okhttp/Route;
invoke-virtual {v0}, Lcom/mbridge/msdk/thrid/okhttp/Route;->requiresTunnel()Z
move-result v0
if-eqz v0, :cond_4
invoke-direct/range {p0 .. p7}, Lcom/mbridge/msdk/thrid/okhttp/internal/

connection/RealConnection;->connectTunnel(IIILcom/mbridge/msdk/thrid/
okhttp/Call;Lcom/mbridge/msdk/thrid/okhttp/EventListener;)V

iget-object v0, p0, Lcom/mbridge/msdk/thrid/okhttp/internal/connection/
RealConnection;->rawSocket:Ljava/net/Socket;

if-nez v0, :cond_3
goto :goto_3
:cond_3
invoke-direct {p0, p1, p2, p6, p7}, Lcom/mbridge/msdk/thrid/okhttp/internal/

connection/RealConnection;->connectSocket(IILcom/mbridge/msdk/thrid/
okhttp/Call;Lcom/mbridge/msdk/thrid/okhttp/EventListener;)V

move/from16 v15, p4
invoke-direct {p0, v11, v15, p6, p7}, Lcom/mbridge/msdk/thrid/okhttp/internal

/connection/RealConnection;->establishProtocol(Lcom/mbridge/msdk/thrid
/okhttp/internal/connection/ConnectionSpecSelector;ILcom/mbridge/msdk/
thrid/okhttp/Call;Lcom/mbridge/msdk/thrid/okhttp/EventListener;)V

iget-object v0, p0, Lcom/mbridge/msdk/thrid/okhttp/internal/connection/
RealConnection;->route:Lcom/mbridge/msdk/thrid/okhttp/Route;

invoke-virtual {v0}, Lcom/mbridge/msdk/thrid/okhttp/Route;->socketAddress()
Ljava/net/InetSocketAddress;

move-result-object v0
iget-object v1, p0, Lcom/mbridge/msdk/thrid/okhttp/internal/connection/

RealConnection;->route:Lcom/mbridge/msdk/thrid/okhttp/Route;
invoke-virtual {v1}, Lcom/mbridge/msdk/thrid/okhttp/Route;->proxy()Ljava/net/

Proxy;
move-result-object v1
iget-object v2, p0, Lcom/mbridge/msdk/thrid/okhttp/internal/connection/

RealConnection;->protocol:Lcom/mbridge/msdk/thrid/okhttp/Protocol;
invoke-virtual {p7, p6, v0, v1, v2}, Lcom/mbridge/msdk/thrid/okhttp/

EventListener;->connectEnd(Lcom/mbridge/msdk/thrid/okhttp/Call;Ljava/
net/InetSocketAddress;Ljava/net/Proxy;Lcom/mbridge/msdk/thrid/okhttp/
Protocol;)V

return-void
.end method

Figure 15: Mintegral SDK using OkHttp Platform class’s
isClearTextTrafficPermitted function, with a triggerable
exception which can allow clear-text traffic from the app.

private static boolean isValidLink(java.security.cert.X509Certificate p2, java.
security.cert.X509Certificate p3) {
if (p2.getSubjectX500Principal().equals(p3.getIssuerX500Principal())) {

try {
p3.verify(p2.getPublicKey());
return true;

} catch (java.security.GeneralSecurityException e) {
return false;

}
} else {

return false;
}

}

Figure 16: isValidLink() function using JSSE’s verify to
check if the certificate is correctly signed by its issuer. In
the case where the verify() function in unreachable, the
certificate is considered invalid.

public void start() {
super.start();
this.setEnabledCiphers(this.enabledCiphers);
int originalTimeout = this.socket.getSoTimeout();
this.socket.setSoTimeout(this.handshakeTimeoutSecs * 1000);

try {
SSLParameters sslParameters = new SSLParameters();
sslParameters.setEndpointIdentificationAlgorithm("HTTPS");
((SSLSocket) this.socket).setSSLParameters(sslParameters);

} catch (NoClassDefFoundError | NoSuchMethodError e) {
if (this.httpsHostnameVerificationEnabled) {

SSLParameters sslParameters = new SSLParameters();
sslParameters.setEndpointIdentificationAlgorithm("HTTPS");
((SSLSocket) this.socket).setSSLParameters(sslParameters);

}
}

((SSLSocket) this.socket).startHandshake();

if (this.hostnameVerifier != null && !this.httpsHostnameVerificationEnabled)
{

SSLSession session = ((SSLSocket) this.socket).getSession();
if (!this.hostnameVerifier.verify(this.host, session)) {

session.invalidate();
this.socket.close();
throw new SSLPeerUnverifiedException(

"Host: " + this.host + ", Peer Host: " + session.getPeerHost()
);

}
}

this.socket.setSoTimeout(originalTimeout);
}

Figure 17: start() function using setSSLParameters and se-
tEndpointIdentificationAlgorithm to enforce secure host-
name verification. This includes a simple check to see
if the JSSE’s setSSLParameters and setEndpointIdentifi-
cationAlgorithm are reachable, and if not implement an
alternate path to ensure secure connection.

private boolean isOCSP(java.security.cert.TrustAnchor p4, java.security.cert.
CertPath p5)

{
try {

java.security.cert.CertPathValidator v0_1 = new java.util.HashSet();
} catch (java.security.NoSuchAlgorithmException) {

return 0;
}
v0_1.add(p4);
java.security.cert.PKIXParameters v4_3 = new java.security.cert.

PKIXParameters(v0_1);
java.security.cert.CertPathValidator v0_4 = java.security.cert.

CertPathValidator.getInstance(runtime.Strings.StringIndexer.
_getString(11460));

int v1_1 = ((java.security.cert.PKIXRevocationChecker) v0_4.
getRevocationChecker());

v1_1.setOptions(java.util.EnumSet.of(java.security.cert.
PKIXRevocationChecker$Option.ONLY_END_ENTITY));

v4_3.addCertPathChecker(v1_1);
v4_3.setRevocationEnabled(1);
v0_4.validate(p5, v4_3);
return 1;

}

Figure 18: isOCSP() function using JSSE’s getRevoca-
tionChecker to check the certificate revocation status, if
the method is not reachable the OCSP status returns as
false.

