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Abstract—While there is a large body of work on understand-
ing vulnerabilities in the wild, little has been done to understand
the dynamics of the remediation phase of the development cycle.
To this end, we have done a timeline analysis on 118K commits
from 53 of the most used JavaScript projects from GitHub to
understand the provenance and prevalence of vulnerabilities in
those projects. We used a vulnerability detector (CodeQL) to
filter commits that introduced vulnerabilities and the commits
that fixed a prior vulnerability. We found that in 82% of the
projects, a commit fixing a prior vulnerability, in turn, introduced
one or more new vulnerabilities. Among those projects, on
average, 18% of the commits intended to fix vulnerabilities, in
turn, introduced one or more new vulnerabilities. We also found
that 50% of the total vulnerabilities found in those projects
originated from a commit meant to fix a prior vulnerability,
and 78% of those vulnerabilities could have been avoided if they
were to use proper internal testing. We provide critical insights
into how proper internal testing can avoid a significant portion
of vulnerabilities, increasing organizations’ security posture.

Index Terms—Software Security, Vulnerability Analysis, Vul-
nerability Remediation, Security Testing

I. INTRODUCTION

Despite recent advancements in vulnerability detection tools
and best practices, a stream of data breaches and exploits have
been observed. We believe that the real reason relies not only
on vulnerability discovery techniques but also on vulnerability
remediation’s success. Public resources such as MITRE Cor-
poration’s CVE [2] database and the National Vulnerability
Database (NVD) [6] are providing valuable references and
resources for a successful remediation phase. The question,
however, remains whether developers are making the most of
those public resources.

Recent literature on vulnerability remediation found that
there are severe issues in the remediation phase that nullify
any vulnerability discovery progress to find security vulner-
abilities [10], [16]. Li et al. found that not all vulnerability
fixes fix the intended vulnerability; it takes more than one
commit to fix the vulnerability. Alomar et al. found that many
leading industry security practitioners are worried that a host
of reasons impede successful vulnerability remediation, and
lack of proper attention from the management and lack of
developer knowledge to fix a vulnerability are leading causes.

The literature on vulnerability analysis lacks any work on
understanding this issue in the real world, and except for very
minimal work, the research community is only waking up to

learn these issues in the wild. As a research community, we
need a proper measurement study before exploring potential
solutions to this issue. To that end, we propose a novel
automated vulnerability analysis to filter commits responsible
for introducing vulnerable codes and filter commits that fix
existing vulnerabilities in the code.

We analyzed 53 JavaScript projects found on GitHub. We
based the study on JavaScript because of its popularity among
developers!, but the proposed framework is language agnostic.
The proposed pipeline can longitudinally analyze a project’s
vulnerability introduction and fixing patterns as time-series
analysis. This gives a holistic view of how projects manage
vulnerabilities and the efficacy of vulnerability remediation.

We found that in 82% of the analyzed projects, a fixing
vulnerability has introduced more vulnerabilities to the code
one-fifth of the time. Overall, 78% of the found vulnerabilities
were publicly disclosed at the introduction; hence a naive
internal scan would have prevented them from the code-base.
The proposed work contributes to the following:

1) A novel technique to longitudinally analyze vulnerability
management in projects.

2) To the best of our knowledge, we provide the first
analysis of quantification of vulnerability remediation
issues at scale.

3) Outline the importance of proper internal testing to avoid
a significant portion of vulnerabilities and increase the
overall security of the project.

II. RELATED WORK

In one of the early works, studying vulnerability analysis,
Frei et al. discuss the lifecycle of a vulnerability from a
security researcher’s or a malicious actor’s perspective [11].
They state that the vulnerability discovery date is mostly
unknown to the public, and the vulnerabilities exist before
being discovered. The issue here for the developers is that
they have to discover the vulnerabilities before the malicious
actors can discover it. However, our data suggest that the
landscape has changed significantly now that a sizable portion
of issues could have been prevented if they were to use proper
testing. Prechelt et al. also suggested that the current state of
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the art repository mining techniques are not adequate to study
vulnerability inducing commits [22].

Source code analysis to detect vulnerabilities have been
studied in the past [12], [14], [20]. These authors have pro-
posed methods to identify vulnerabilities in the codebase using
patterns described in MITRE Corporation’s Common Weak-
ness Enumeration. Another related project has discussed the
challenges of finding commits pushing vulnerabilities using
the mining data from source control repositories [13]. How-
ever, our methodology goes one step beyond to understand
specific security vulnerabilities introduced in each commit.

Version controlling data is used to analyze the changes in
a codebase and find the vulnerability introductions [9], [15],
[20]. The commit log and the commit messages are also mined
to understand the intention and if the commit has fixed any
bugs. The work by Peguero et al. [19] also uses the source
code and version controlling data for identifying the cross-
site scripting vulnerabilities in JavaScript frameworks. We
are using the Git version controlling system and the GitHub
platform to mine the commit data such as commit message,
commit author, and commit hash of a specific repository.
However, we are not focusing on the commit messages to find
whether the commit has done any fixing of vulnerability or not.
We are focusing on the CodeQL analysis result for a specific
commit version to identify whether the commit has fixed a
vulnerability or the commit has introduced a vulnerability.

Prior work has looked into the remediation phase both
in general software engineering [24], [26] and in specific
software security domains [16], [17], [21]. Meneely et al.
have studied commits that have introduced vulnerabilities and
likely reasons behind those vulnerabilities, such as lack of
knowledge [17]. Li et al. have conducted a large scale study on
security patches and found that not all patches have fixed the
vulnerability, and there is a significant lapse of time between
public disclosure of a vulnerability and the time it took to
fix the said vulnerability [16]. In both cases, their findings
highlight the need for an effective vulnerability remediation.

Recent work on vulnerability pipeline in organizations has
also found that many organizations have focused more on
vulnerability discovery but less on the remediation, which is
a grave concern [10]. They found that management is likely
to have a false sense of security without proper remediation.
We like to measure this observation’s prevalence in the wild
by analyzing code and commits in public repositories.

III. METHODOLOGY

Our main objective is to understand the flaws in vulnerabil-
ity remediation through source code and repository analysis.
We detail our methodology in this section.

A. Selection of JavaScript repositories

We selected the repositories with at least 500 commits since
the analysis needs a substantial list of commits for a particular
repository. The minimum threshold enables us to carry out
longitudinal analysis of the commits. We randomly selected

53 JavaScript repositories from combining three publicly avail-
able lists that list most dependent upon JavaScript packages?**.
Each of these repositories has more than two authors and has
a substantial amount of current users. We are in the process
of analyzing all the projects mentioned in those resources, but
in this paper, we present the first 53 projects analyzed so far.

B. Analysing GitHub Commits

Vulnerabilities in a codebase can be analyzed either by man-
ual inspection or by automated inspection [12]. For JavaScript
applications, detecting vulnerabilities can be done based on
specific patterns. Such patterns can be found in Open Web
Application Security Project [7] and the Common Weakness
Enumeration (CWE) [3]. For instance, by analyzing the code-
base, the developers or testers can identify specific Cross-Site
Scripting (XSS) attacking vectors, sources, and sinks.

Since the manual analysis for vulnerabilities is inefficient
and not scalable, we used CodeQL [1], which is an open-
source tool distributed by GitHub. It is an automated variant
analysis tool that identifies the variants of security vulner-
abilities and generic software bugs in languages such as
JavaScript, TypeScript, Python, C, C++, C#, and Go. CodeQL
is based on the QL [8] query language, and it uses the known
vulnerabilities as seeds to find similar issues in the codebase.
Using CodeQL, we can list the vulnerabilities in a repository
at a particular point in time. Therefore, we run CodeQL for all
the commits found in each of the 53 JavaScript repositories.
For each of these commits, we then use the GitHub API [4] to
extract its date, commit message, commit hash and the author’s
details (name, username and email).

C. Security vulnerability extraction

The result from the above step contains all the issues
that CodeQL identified by analyzing a given commit and an
example of such an issue is shown in Figure 1. The identified
issue in Figure 1 is a Invalid prototype value. We need to
identify which of the CodeQL issues has an associated CWE
reference number — only the security vulnerabilities have a
CWE reference. The CodeQL references were scraped from
its website [5] and stored in a JSON file. Listing 1 shows
the respective CWE reference related to Invalid prototype
value. We also downloaded the CWE database® to obtain
the published date of a given CWE. From here onwards,
vulnerability means any issue CodeQL detected with one or
more CWE references.

Intro commit is the commit CodeQL observes a vulnerability
for the first time in a codebase. It is the commit responsible
for the vulnerable code. We define Fix commit as the commit
responsible for fixing a given vulnerability. We developed an
Automated Analysis Pipeline, which integrates all the steps
starting from getting all git commits up to analyzing using
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Name Invalid prototype value

Deseisiom An attempt tousea valgc that is not an lobjcct or ‘null’ as a
prototype will either be ignored or result in a runtime error.

Severity error

Message Values of type number cannot be used as prototypes.

Path /index.js

Start Line 100

Start Column 15

End Line 100

End Column 30

Fig. 1: An example output from CodeQL analysis

{”link”: “https://help.semmle.com/wiki/display
/JS/Invalid+prototype+value”,

“name”: “Invalid prototype value”,

“description”: “An attempt to use a value that
is not an object or ’'null’ as a prototype
will either be ignored or result in a
runtime error.”,

”id”: ”js/invalid —prototype—value”,
”kind”: "problem”,

“severity”: “error”,

“precision”: “high”,
“recommendation”: “Fix the prototype

assignment by providing a valid prototype
value .”,

“references”: [”"CWE-704"]}

Listing 1: A CodeQL vulnerability with its CWE reference

CodeQL and finally saving the results as CSV files. The
algorithm is shown in Algorithm 1.

Algorithm 1: Analysis Pipeline

Data: JavaScript repositories
Result: CSV output file of CodeQL analysis
1. Select JavaScript repository
2. Get all the Git commit hashes of the selected
repository
3. Get all the commit author data from the selected
repository
for commit in Commits do
1. Checkout the commit
2. Create CodeQL database for the checked out
version of the repository
3. Analyse the created CodeQL database using the
CodeQL tool
4. Select all CodeQL issues with a CWE reference
5. Get the published date for the given CWE from
the CWE database
L 6. Write the result file into a CSV file

IV. ANALYSIS

We have analyzed 53 JavaScript projects using our auto-
mated analysis pipeline. The pipeline has processed 118,023

commits from those 53 projects. CodeQL found 5,046 se-
curity vulnerabilities among those 118K commits. CodeQL
categorizes severity of vulnerabilities into errors, warnings and
recommendations. Out of the commits analyzed, we found
541 errors, 4,231 warnings, and 274 recommendations. At
the time of analysis, on average, there were 10 unresolved
security weaknesses in all of the projects — there were, on
average, 95 security weaknesses found in each project. We
observed that, on average, developers had taken 88 days to
fix a security weakness. In the remainder of this section, we
present a finer-grained analysis highlighting inefficacies found
in vulnerability remediation on JavaScript projects.

The focus of this study is to highlight the importance of
source code analysis for understanding the efficacy and current
status of vulnerability remediation. Prior work has filtered se-
curity patches based on commit messages and analyzed higher-
level factors such as their success rate, time taken to react to a
vulnerability, etc [16]. Our novel methodology, however, lets
us collect data at a finer-grained level to understand better
insights and gain a holistic view.

A. Bad Fixes

At the heart of the vulnerability remediation is fixing a
vulnerability. The success of the entire vulnerability analysis
of an organization depends on how quickly and successfully
a given vulnerability is fixed. Alomar et al. [10] found that
many industry experts have voiced concerns about the lack
of success in fixing bugs due to a variety of reasons such as
the lack of knowledge on fixing a given vulnerability, staffing
or budget issues, lack of proper attention to remediation, and
third-party dependencies.

To quantify this argument, we used our novel automated
pipeline to filter out commits that have fixed a vulnerability
and to understand the success of the remediation. Fix commit
is a commit that is responsible for removing a vulnerability
from the code base; hence we believe that one of the main
objectives of that commit is to fix a prior vulnerability. Li et
al. found that in some cases, there multiple attempts to fix
a vulnerability [16]. In our analysis, we only count the final
attempt that fixed the vulnerability ignoring prior unsuccessful
attempts. Hence, the numbers we present could be a lower
bound to the issues we raise.

B. Developer’s Role

A critical question in this issues is to understand factors that
push developers to introduce new vulnerabilities in the pro-
cess of fixing another vulnerability. Answering that question
requires significant working hours to analyze code changes.
Understanding why a fix went wrong is also answering the
question of developers’ role in this eco-system. There is a
rich line of work on understanding developers, security testers,
security advice on the internet [23], [25]. Literature lacks work
on understanding why developers fail to fix vulnerabilities.

We, however, manually inspected ten randomly picked in-
tro+fix commits. When manually inspecting these ten commits,
we identified seven commits where the author has fixed the



vulnerability, and, part of that fix has introduced another
vulnerability because the author has either renamed the file
containing the vulnerability or refactored the vulnerable code
to another file. Upon inspecting two other commits, which
from the random sample of intro+fix commits, we identified
an instance where the author tried to fix it by moving the
vulnerable piece of code from the initially identified vulnerable
file to another file as a modified function. Which, in return,
resulted in another vulnerability. The remaining commit con-
tained no relationship between its fix and the newly introduced
vulnerability. While these commits won’t give us a the full
picture, this manual analysis shows that inability to properly
fix a vulnerability could be tip of the ice among host of
security related developer issues.

Our automated pipeline can delve into more developer
centric statistics on this issue. Based on our analysis, we
found that in some projects, as much as 5% of developers
are responsible for intro+fix commits introducing more vul-
nerabilities. Out of all the intro+fix commits, 80% of the
time, the intro commit and the intro+fix commit that was
supposed to fix the original vulnerability were pushed by the
same developer. This is a good sign in terms of developers
taking ownership of the code that caused the vulnerability in
the first place. However, further investigation is required to
better understand why they could not fix the vulnerable code
properly, fixing their own mistakes. Among the developers
responsible for intro+fix commits, 6.8% of them have pushed
such code changes to multiple projects — it is imperative to
take necessary steps to understand this phenomenon and find
approaches to help developers to write secure code.

C. Security Posture

Alomar et al. found that many organizations lack a properly
defined vulnerability remediation framework [10]. Such a
framework would help testers and triagers of vulnerability
reports to prioritize new vulnerabilities to fix them based
on business requirements and predefined set of rules. They
have also mentioned that the lack of proper internal testing
before production or, bug bounty program, would make testing
approach less effective.

We compared the published data of CWEs and the date of
the intro commit that pushed the vulnerable code to check
whether the vulnerable code could have been avoided. We
found that 78% of the time, developers have pushed a publicly-
disclosed vulnerability to the codebase. We also found that, on
average, projects have repeated 75% of vulnerabilities. This re-
iterates the above fact that even naive internal testing could
have avoided a significant portion of vulnerabilities. From a
software engineering perspective, proper development tools
could have also helped the developer find those weaknesses
before pushing the changes to avoid costly security testing or
costlier security breaches.

We also found that 50% of the time, developers pushed a
fix while there were other high severity weaknesses in the
codebase. While this could happen due to many legitimate
reasons such as high severity weaknesses could take longer to

fix or they might have followed the chronological order of the
weaknesses. However, if none of the above two reasons are
applicable, then the organizations should have a mechanism
to prioritize weaknesses to fix.

V. DISCUSSION

This study’s main objective is to showcase the feasibility of
using the source code analysis to answer some of the critical
security questions at the intersection of software engineering
and software security. Based on the results presented in this
paper, we show that issues recently raised in the literature on
vulnerability remediation can be quantified. This quantification
has many implications on software security, software develop-
ment tools, and internal security testing. We present a brief
discussion on future research avenues along those lines.

Recently Alomar et al. found that vulnerability remediation
not only lacks proper attention but also can mute any progress
made in vulnerability discovery techniques [10]. Their study
participants mentioned that fixing a vulnerability could be as
hard as finding them for reasons such as lack of knowledge,
lack of details with the vulnerability report, etc. Our quan-
tification of the remediation process has shown that fixing a
given vulnerability one-fifth of the time has gone from bad to
worse by introducing more vulnerabilities to the codebase. The
literature lacks any quantifications on this issue, and lack of
data makes it hard to prove this issue and encourage developers
to be more secure in development.

Our novel source code analysis pipeline can provide in-
teresting insights into other aspects of the above-mentioned
vulnerability remediation issue. Source code analysis will
reveal more insights into hidden patterns behind failed vulner-
abilities fixes. While we only manually examined ten intro+fix
commits, more work is needed to understand patterns and
possibly figure out the reasons behind those failures. In seven
out of ten manually-analyzed intro+fix commits, the code
supposed to fix a prior vulnerability has directly contributed
to a new set of vulnerabilities.

In the manual analysis, we found out that seven out of
ten intro+fix commits have been created because the commit
author has changed the file name or has refactored the code.
The vulnerability in one file is identified as fixed, and a new
vulnerability is introduced in the new file. Moving forward, we
have to devise ways to detect code refactoring automatically.
That will reduce incorrect labeling of commit fixes.

Understanding finer grained failure patterns in the code will
help to understand developer failure. Prior work has looked
into writing secure code and getting security to advise on the
web [23], [25]. Our work brings out a different avenue on
understanding why developers fail to fix vulnerabilities. It is
an important question to investigate to find a practical solution
to the remediation issues. Source code analysis will be at the
center in understanding current failure patterns before reaching
out to developers to understand their side of the stories.

Understanding the impact of using proper tools to avoid
pushing buggy code is important. The literature on software
security is filled with new security vulnerabilities, but little has



been studied from the software development side on how to
deploy these techniques to help developers to write secure code
and avoid vulnerabilities in the first place. We found that 78%
of all discovered security vulnerabilities were publicly known
at the time of the commit. If the developers had proper tools
to scan the code changes, costly release fixes or data breaches
could have been avoided.

Another critical aspect of the source code analysis is un-
derstanding and quantifying the security posture of an organi-
zation. The capability maturity model in software engineering
defines different levels based on the maturity of the software
development processes [18]. We envision quantifiable security
issues we uncover from source code analysis can be used to
define a maturity model for an organization. Observations such
as lack of proper internal security testing, lack of processes
to avoid the repeated occurrence of the same vulnerability,
and proper developer training can be used to understand and
potentially rate the organizations for their maturity.

We believe that the public has much to gain from our
automated analysis; hence we have opened our analysis to the
public through a real-time dashboard displaying our analysis®.
We envision this to grow to cover a significant portion of
public repositories; hence, the public can be informed about
many public repositories’ security posture. We also envision
incorporating developer statistics per user and project, giving
developers the incentive to be conscious in writing code.

We presented a novel automated pipeline to uncover In-
tro commits, and Fix Commits. This approach can be used
to answer many timely-needed research questions such as
quantifying vulnerability remediation issues, understanding
remediation failures, understanding developer failures in fixing
vulnerabilities, etc. We believe most of these new directions
will bring the research community a step closer to help
organizations to have a secure development culture.
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